NEW ALGORITHM TO MODEL PROTEIN PROTEIN RECOGNITION BASED ON SURFACE COMPLEMENTARITY - APPLICATIONS TO ANTIBODY ANTIGEN DOCKING

被引:128
作者
WALLS, PH [1 ]
STERNBERG, MJE [1 ]
机构
[1] IMPERIAL CANC RES FUND,BIOMOLEC MODELLING LAB,44 LINCOLNS INN FIELDS,LONDON WC2A 3PX,ENGLAND
关键词
PROTEIN RECOGNITION; COMPUTER MODELING; ANTIBODY COMPLEXES; SURFACE COMPLEMENTARITY; PARALLEL COMPUTER;
D O I
10.1016/0022-2836(92)90506-F
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A novel algorithm is presented which models protein-protein interactions using surface complementarity. The method is applied to antibody-antigen docking. A steric scoring scheme, based upon a soft potential, is used to assess complementarity, and a simple electrostatic model is then used to remove infeasible interactions. The soft potential allows for structural changes that occur during docking. Biochemical knowledge is necessary to reduce the number of docking orientations produced by the method to a manageable size. The information used includes the known epitope residues and a single loose distance constraint. The method is applied to all three crystallographically determined antibody-lysozyme complexes, HyHEL-10, D1.3 and HyHEL-5. For the first time, a predicted antibody structure (that of D1.3) is used as a docking target. In the four systems modelled, the method identifies between 15 and 40 possible docking orientations. The root-meansquare (r.m.s.) deviation between these orientations and the relevant crystallographic complex is measured in the interface region. For all four complexes an orientation is found with r.m.s. deviation in the range 1.9 Å and 4.8 Å. The algorithm is implemented on a single instruction/multiple datastream (SI/MD) architecture computer. The use of a parallel architecture computer ensures detailed coverage of the search space, whilst still maintaining a search time of two days. © 1992.
引用
收藏
页码:277 / 297
页数:21
相关论文
共 46 条
  • [1] 3-DIMENSIONAL STRUCTURE OF AN ANTIGEN-ANTIBODY COMPLEX AT 2.8-A RESOLUTION
    AMIT, AG
    MARIUZZA, RA
    PHILLIPS, SEV
    POLJAK, RJ
    [J]. SCIENCE, 1986, 233 (4765) : 747 - 753
  • [2] PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES
    BERNSTEIN, FC
    KOETZLE, TF
    WILLIAMS, GJB
    MEYER, EF
    BRICE, MD
    RODGERS, JR
    KENNARD, O
    SHIMANOUCHI, T
    TASUMI, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) : 535 - 542
  • [3] SMALL REARRANGEMENTS IN STRUCTURES OF FV AND FAB FRAGMENTS OF ANTIBODY D1.3 ON ANTIGEN-BINDING
    BHAT, TN
    BENTLEY, GA
    FISCHMANN, TO
    BOULOT, G
    POLJAK, RJ
    [J]. NATURE, 1990, 347 (6292) : 483 - 485
  • [4] KNOWLEDGE-BASED PREDICTION OF PROTEIN STRUCTURES AND THE DESIGN OF NOVEL MOLECULES
    BLUNDELL, TL
    SIBANDA, BL
    STERNBERG, MJE
    THORNTON, JM
    [J]. NATURE, 1987, 326 (6111) : 347 - 352
  • [5] THE HIGH-RESOLUTION X-RAY CRYSTAL-STRUCTURE OF THE COMPLEX FORMED BETWEEN SUBTILISIN CARLSBERG AND EGLIN-C, AN ELASTASE INHIBITOR FROM THE LEECH HIRUDO-MEDICINALIS - STRUCTURAL-ANALYSIS, SUBTILISIN STRUCTURE AND INTERFACE GEOMETRY .2.
    BODE, W
    PAPAMOKOS, E
    MUSIL, D
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 166 (03): : 673 - 692
  • [6] NMR AND BIOCHEMISTRY
    CAMPBELL, ID
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 1991, 19 (02) : 243 - 248
  • [7] PROTEIN-PROTEIN RECOGNITION ANALYZED BY DOCKING SIMULATION
    CHERFILS, J
    DUQUERROY, S
    JANIN, J
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 11 (04): : 271 - 280
  • [8] PRINCIPLES OF PROTEIN-PROTEIN RECOGNITION
    CHOTHIA, C
    JANIN, J
    [J]. NATURE, 1975, 256 (5520) : 705 - 708
  • [9] CANONICAL STRUCTURES FOR THE HYPERVARIABLE REGIONS OF IMMUNOGLOBULINS
    CHOTHIA, C
    LESK, AM
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (04) : 901 - 917
  • [10] CONFORMATIONS OF IMMUNOGLOBULIN HYPERVARIABLE REGIONS
    CHOTHIA, C
    LESK, AM
    TRAMONTANO, A
    LEVITT, M
    SMITHGILL, SJ
    AIR, G
    SHERIFF, S
    PADLAN, EA
    DAVIES, D
    TULIP, WR
    COLMAN, PM
    SPINELLI, S
    ALZARI, PM
    POLJAK, RJ
    [J]. NATURE, 1989, 342 (6252) : 877 - 883