QUANTUM SUPPRESSION OF DIFFUSION ON STOCHASTIC WEBS

被引:46
作者
DANA, I
机构
[1] Department of Physics, Bar-Ilan University
关键词
D O I
10.1103/PhysRevLett.73.1609
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum suppression of diffusion on stochastic webs is shown to take place for the kicked harmonic oscillator in the form of exactly periodic recurrences. This phenomenon occurs, in general, only if three conditions are satisfied: (1) The kicking potential is odd, up to an additive constant. (2) The web is crystalline with square or hexagonal symmetry. (3) A dimensionless A assumes integer values. The nature of the phenomenon and its sensitivity to small perturbations are examined in terms of generalized kicked Harper models and the theory of topological Chern invariants.
引用
收藏
页码:1609 / 1612
页数:4
相关论文
共 29 条
[1]   THE WIDTH OF THE STOCHASTIC WEB AND PARTICLE DIFFUSION ALONG THE WEB [J].
AFANASIEV, VV ;
CHERNIKOV, AA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (4-5) :229-236
[2]  
AMIT M, IN PRESS
[3]  
ARNOLD VI, 1964, RUSS MATH SURV, V18, P85
[4]   PHASE-DIAGRAM IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
BORGONOVI, F ;
GUARNERI, I ;
REBUZZINI, L ;
CASATI, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3302-3305
[5]   FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (26) :3826-3829
[6]   THE PROBLEM OF QUANTUM CHAOS IN A KICKED HARMONIC-OSCILLATOR [J].
BERMAN, GP ;
RUBAEV, VY ;
ZASLAVSKY, GM .
NONLINEARITY, 1991, 4 (02) :543-566
[7]  
BORGONOVI F, 1992, FNTT9219 U PAV REP
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]   QUANTUM HALL CONDUCTANCES AND LOCALIZATION IN A MAGNETIC-FIELD [J].
DANA, I ;
ZAK, J .
PHYSICAL REVIEW B, 1985, 32 (06) :3612-3621
[10]   DIFFUSION IN THE STANDARD MAP [J].
DANA, I ;
FISHMAN, S .
PHYSICA D, 1985, 17 (01) :63-74