SINGULAR POINT ANALYSIS OF NONLINEAR-WAVE EQUATIONS

被引:11
作者
STEEB, WH [1 ]
KLOKE, M [1 ]
SPIEKER, BM [1 ]
GRAUEL, A [1 ]
机构
[1] UNIV GIESSEN,INST THEORET PHYS,D-6300 GIESSEN,FED REP GER
来源
LETTERE AL NUOVO CIMENTO | 1984年 / 39卷 / 17期
关键词
D O I
10.1007/BF02790576
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:429 / 432
页数:4
相关论文
共 11 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]  
ALOWITZ MJ, 1980, J MATH PHYS NY, V21, P715
[3]   PAINLEVE PROPERTY AND MULTICOMPONENT ISOSPECTRAL DEFORMATION EQUATIONS [J].
CHUDNOVSKY, DV ;
CHUDNOVSKY, GV ;
TABOR, M .
PHYSICS LETTERS A, 1983, 97 (07) :268-274
[4]   A BOUNDARY-VALUE PROBLEM ASSOCIATED WITH THE 2ND PAINLEVE TRANSCENDENT AND THE KORTEWEG-DE VRIES EQUATION [J].
HASTINGS, SP ;
MCLEOD, JB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 73 (01) :31-51
[5]   THE CONNECTION BETWEEN PARTIAL-DIFFERENTIAL EQUATIONS SOLUBLE BY INVERSE SCATTERING AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
MCLEOD, JB ;
OLVER, PJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (03) :488-506
[6]   CYLINDRICAL KORTEWEG-DEVRIES EQUATION AND PAINLEVE PROPERTY [J].
STEEB, WH ;
KLOKE, M ;
SPIEKER, BM ;
OEVEL, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :L447-L450
[7]   LIOUVILLE EQUATION, PAINLEVE PROPERTY AND BACKLUND TRANSFORMATION [J].
STEEB, WH ;
KLOKE, M ;
SPIEKER, BM .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1983, 38 (10) :1054-1055
[8]  
STEEB WH, UNPUB
[9]  
STEEB WH, 1984, LECTURE NOTES PHYSIC
[10]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526