THE TRAVELING SALESMAN PROBLEM ON A GRAPH AND SOME RELATED INTEGER POLYHEDRA

被引:190
作者
CORNUEJOLS, G [1 ]
FONLUPT, J [1 ]
NADDEF, D [1 ]
机构
[1] UNIV GRENOBLE,LAB INFORMAT & MATH APPL GRENOBLE,F-38402 ST MARTIN HERES,FRANCE
关键词
D O I
10.1007/BF01582008
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
11
引用
收藏
页码:1 / 27
页数:27
相关论文
共 11 条
[1]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[2]   HALIN GRAPHS AND THE TRAVELING SALESMAN PROBLEM [J].
CORNUEJOLS, G ;
NADDEF, D ;
PULLEYBLANK, WR .
MATHEMATICAL PROGRAMMING, 1983, 26 (03) :287-294
[3]  
Edmonds J., 1971, MATH PROGRAM, V1, P127, DOI [10.1007/BF01584082, DOI 10.1007/BF01584082]
[4]  
Fleischmann B., 1982, 11 INT S MATH PROGR
[5]  
FLEISCHMANN B, 1983, QM0383 U HAMB I UNT
[6]   ON THE RELATIONSHIP BETWEEN THE BICONNECTIVITY AUGMENTATION AND TRAVELING SALESMAN PROBLEMS [J].
FREDERICKSON, GN ;
JAJA, J .
THEORETICAL COMPUTER SCIENCE, 1982, 19 (02) :189-201
[7]   SYMMETRIC TRAVELING SALESMAN PROBLEM .1. INEQUALITIES [J].
GROTSCHEL, M ;
PADBERG, MW .
MATHEMATICAL PROGRAMMING, 1979, 16 (03) :265-280
[8]   ORDER-PICKING IN A RECTANGULAR WAREHOUSE - A SOLVABLE CASE OF THE TRAVELING SALESMAN PROBLEM [J].
RATLIFF, HD ;
ROSENTHAL, AS .
OPERATIONS RESEARCH, 1983, 31 (03) :507-521
[9]  
TAKAMIZAWA K, 1982, J ACM, V29, P632
[10]   STEINER TREES, PARTIAL 2-TREES, AND MINIMUM IFI NETWORKS [J].
WALD, JA ;
COLBOURN, CJ .
NETWORKS, 1983, 13 (02) :159-167