ON THE STABILITY OF THE BAREISS AND RELATED TOEPLITZ FACTORIZATION ALGORITHMS

被引:40
作者
BOJANCZYK, AW
BRENT, RP
de Hoog, FR
SWEET, DR
机构
[1] AUSTRALIAN NATL UNIV, COMP SCI LAB, CANBERRA, ACT 0200, AUSTRALIA
[2] CSIRO, DIV MATH & SCI, CANBERRA, ACT 2601, AUSTRALIA
[3] DEF SCI & TECHNOL ORG, ELECTR RES LAB, SALISBURY, SA 5108, AUSTRALIA
关键词
TOEPLITZ MATRICES; BAREISS ALGORITHM; LEVINSON ALGORITHM; NUMERICAL STABILITY;
D O I
10.1137/S0895479891221563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper contains a numerical stability analysis of factorization algorithms for computing the Cholesky decomposition of symmetric positive definite matrices of displacement rank 2. The algorithms in the class can be expressed as sequences of elementary downdating steps. The stability of the factorization algorithms follows directly from the numerical properties of algorithms for realizing elementary downdating operations. It is shown that the Bareiss algorithm for factorizing a symmetric positive definite Toeplitz matrix is in the class and hence the Bareiss algorithm is stable. Some numerical experiments that compare behavior of the Bareiss algorithm and the Levinson algorithm are presented. These experiments indicate that generally (when the reflection coefficients are not all of the same sign) the Levinson algorithm can give much larger residuals than the Bareiss algorithm.
引用
收藏
页码:40 / 57
页数:18
相关论文
共 25 条
[1]   ANALYSIS OF A RECURSIVE LEAST-SQUARES HYPERBOLIC ROTATION ALGORITHM FOR SIGNAL-PROCESSING [J].
ALEXANDER, ST ;
PAN, CT ;
PLEMMONS, RJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 98 :3-40
[2]   NUMERICAL SOLUTION OF LINEAR EQUATIONS WITH TOEPLITZ AND VECTOR TOEPLITZ MATRICES [J].
BAREISS, EH .
NUMERISCHE MATHEMATIK, 1969, 13 (05) :404-&
[3]  
BENNETT JM, 1965, NUMER MATH, V7, P217
[4]   A NOTE ON DOWNDATING THE CHOLESKY FACTORIZATION [J].
BOJANCZYK, AW ;
BRENT, RP ;
VANDOOREN, P ;
de Hoog, FR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03) :210-221
[5]   STABILIZED HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS [J].
BOJANCZYK, AW ;
STEINHARDT, AO .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (08) :1286-1288
[6]   QR FACTORIZATION OF TOEPLITZ MATRICES [J].
BOJANCZYK, AW ;
BRENT, RP ;
de Hoog, FR .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :81-94
[7]  
BOJANCZYK AW, 1988, P SOC PHOTO-OPT INS, V975, P68
[8]  
BOJANCZYK AW, 1991, CMAMR1791 AUSTR NAT
[10]   THE NUMERICAL STABILITY OF THE LEVINSON-DURBIN ALGORITHM FOR TOEPLITZ-SYSTEMS OF EQUATIONS [J].
CYBENKO, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (03) :303-319