ON THE NONEXISTENCE OF ENERGY STABLE MINIMAL CONES

被引:5
作者
DIERKES, U [1 ]
机构
[1] UNIV BONN,INST ANGEW MATH,SONDERFORSCH BEREICH 256,W-5300 BONN 1,GERMANY
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1990年 / 7卷 / 06期
关键词
49; F; 22; Stable cones;
D O I
10.1016/S0294-1449(16)30282-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there are no non-trivial (potential) energy stable minimal cones in ℝn × ℝ+ with singularity at 0, if 2 ≦ n ≦ 5. The sharpness of this result is demonstrated by proving that a certain six dimensional cone in ℝ7 is stable. Moreover, we extend all results to the more general α-energy functional. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:589 / 601
页数:13
相关论文
共 7 条
[1]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[2]   A CLASSIFICATION OF MINIMAL CONES IN RNXR+ AND A COUNTEREXAMPLE TO INTERIOR REGULARITY OF ENERGY MINIMIZING FUNCTIONS [J].
DIERKES, U .
MANUSCRIPTA MATHEMATICA, 1989, 63 (02) :173-192
[3]  
DIERKES U, 1988, INDIANA U MATH J, V37
[4]  
Federer H., 1969, GEOMETRIC MEASURE TH
[5]  
SCHOEN R, 1975, ACTA MATH, V134, P276
[6]  
SIMON L, 1983, AUSTR NAT U, V3
[7]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&