EFFECT OF NONLOCAL INTERACTIONS ON SOLITON DYNAMICS IN ANHARMONIC LATTICES

被引:41
作者
GAIDIDEI, Y
FLYTZANIS, N
NEUPER, A
MERTENS, FG
机构
[1] UKRAINIAN ACAD SCI,INST THEORET PHYS,KIEV 252143,UKRAINE
[2] UNIV CRETE,DEPT PHYS,GR-71409 IRAKLION,GREECE
关键词
D O I
10.1103/PhysRevLett.75.2240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We considered the effect of a Kac-Baker-like long-range interaction potential in an anharmonic chain. The interplay of short- and long-range interactions leads to the existence of two types of solitons with characteristically different, widths for two velocity regions separated by a gap. The low-velocity branch exists up to a maximum critical velocity where the shape reaches a crestlike form. In the high-velocity branch we used multiple scale analysis since two different scales are important.
引用
收藏
页码:2240 / 2243
页数:4
相关论文
共 20 条
[1]   ONE-DIMENSIONAL ORDER-DISORDER MODEL WHICH APPROACHES A SECOND-ORDER PHASE TRANSITION [J].
BAKER, GA .
PHYSICAL REVIEW, 1961, 122 (05) :1477-&
[2]   KINKS IN THE FRENKEL-KONTOROVA MODEL WITH LONG-RANGE INTERPARTICLE INTERACTIONS [J].
BRAUN, OM ;
KIVSHAR, YS ;
ZELENSKAYA, II .
PHYSICAL REVIEW B, 1990, 41 (10) :7118-7138
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
EILBECK JC, 1992, LECT NOTES, V393, P143
[5]   KINK, BREATHER AND ASYMMETRIC ENVELOPE OR DARK SOLITONS IN NONLINEAR CHAINS .1. MONATOMIC CHAIN [J].
FLYTZANIS, N ;
PNEVMATIKOS, S ;
REMOISSENET, M .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (24) :4603-4629
[6]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[7]  
HOCHSTRASSER D, 1988, PHYS REV A, V36, P5332
[8]   SOLITONS IN A ONE-DIMENSIONAL LENNARD-JONES LATTICE [J].
ISHIMORI, Y .
PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (02) :402-410
[9]  
KAC AM, 1972, J MATH PHYS, V4, P1078
[10]  
Kevorkian J., 1981, PERTURBATION METHODS