A PROOF OF SOME IDENTITIES OF RAMANUJAN USING MODULAR-FORMS

被引:41
作者
BIAGIOLI, AJF [1 ]
机构
[1] UNIV MISSOURI,ROLLA,MO 65401
关键词
D O I
10.1017/S0017089500007850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:271 / 295
页数:25
相关论文
共 13 条
[1]  
BERNDT BC, 1986, J RAMANUJAN MATH SOC, V1, P1
[2]  
BERNDT BC, 1987, INDIAN J MATH, V29
[3]  
BERNDT BC, 1987, J INDIAN MATH SOC, V51
[4]   LOOK BACK AT RAMANUJANS NOTEBOOKS [J].
BIRCH, BJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (JUL) :73-79
[5]  
BRESSOUD D, 1980, THESIS TEMPLE U
[6]  
Darling HBC, 1921, P LOND MATH SOC, V19, P350
[7]  
KNOPP M, 1970, MODULAR FUNCTIONS AN
[8]  
Mordell LJ, 1922, P LOND MATH SOC, V20, P408
[9]  
RADEMACHER H, 1972, TOPICS ANAL NUMBER T
[10]  
Rankin R. A., 1977, MODULAR FORMS FUNCTI