NO VERSUS N2O EMISSIONS FROM AN NH-4+-AMENDED BERMUDA GRASS PASTURE

被引:60
作者
HUTCHINSON, GL [1 ]
BRAMS, EA [1 ]
机构
[1] PRAIRIE VIEW A&M UNIV, COOPERAT AGR RES CTR, PRAIRIE VIEW, TX 77446 USA
关键词
D O I
10.1029/92JD00713
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We used an enclosure technique to monitor soil NO and N2O emissions during early summer regrowth of Bermuda grass (Cynodon dactylon) on sandy loam in a humid, subtropical region of southern Texas. The evolution of both gases was substantially higher from plots harvested at the beginning of the experiment and fertilized 5 days later with 52 kg N ha-1 as (NH4)2SO4 than from plots not harvested or fertilized. Emission of NO, but not N2O, was stimulated by clipping and removing the grass, probably because eliminating the shading provided by the dense grass canopy changed these plots from cooler to warmer than unharvested plots, thereby stimulating the activity of soil microorganisms responsible for NO production. Neither gas flux was significantly affected by application of N until the next rainfall dissolved and moved the surface-applied fertilizer into the soil. Immediately thereafter, emissions of NO and N2O increased dramatically to peaks of 160 and 12 g N ha-1 d-1 respectively, and then declined at rates that closely paralleled the nitrification rate of added NH4+, indicating that the gases resulted from the activity of nitrifying microorganisms, rather than denitrifiers. Nitric oxide emissions during the 9-week measurement period averaged 7.2 times greater than N2O emissions and accounted for 3.2% of the added N. The data indicate that humid, subtropical grasslands, which not only have large geographical extent but also have been subject to intense anthropogenic disturbance, contribute significantly to the global atmospheric NOx budget.
引用
收藏
页码:9889 / 9896
页数:8
相关论文
共 32 条
[1]   SIMULTANEOUS FIELD-MEASUREMENTS OF BIOGENIC EMISSIONS OF NITRIC-OXIDE AND NITROUS-OXIDE [J].
ANDERSON, IC ;
LEVINE, JS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D1) :965-976
[2]   RELATIVE RATES OF NITRIC-OXIDE AND NITROUS-OXIDE PRODUCTION BY NITRIFIERS, DENITRIFIERS, AND NITRATE RESPIRERS [J].
ANDERSON, IC ;
LEVINE, JS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (05) :938-945
[3]  
[Anonymous], AGR ECOSYSTEM EFFECT
[4]  
ANTHONY WHH, 1990, AGRONOMY ABSTRACTS, P243
[5]   NITROUS-OXIDE PRODUCTION BY ORGANISMS OTHER THAN NITRIFIERS OR DENITRIFIERS [J].
BLEAKLEY, BH ;
TIEDJE, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1982, 44 (06) :1342-1348
[6]   SOURCES OF NITRIC-OXIDE AND NITROUS-OXIDE FOLLOWING WETTING OF DRY SOIL [J].
DAVIDSON, EA .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (01) :95-102
[7]   NITROUS-OXIDE EMISSIONS FROM FERTILIZED SOILS - SUMMARY OF AVAILABLE DATA [J].
EICHNER, MJ .
JOURNAL OF ENVIRONMENTAL QUALITY, 1990, 19 (02) :272-280
[8]   SPATIAL VARIABILITY OF FIELD-MEASURED DENITRIFICATION GAS FLUXES [J].
FOLORUNSO, OA ;
ROLSTON, DE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1984, 48 (06) :1214-1219
[9]   NITROGEN ENRICHMENT OF SURFACE WATER BY ABSORPTION OF AMMONIA VOLATILIZED FROM CATTLE FEEDLOTS [J].
HUTCHINSON, GL ;
VIETS, FG .
SCIENCE, 1969, 166 (3904) :514-+
[10]   IMPROVED SOIL COVER METHOD FOR FIELD MEASUREMENT OF NITROUS-OXIDE FLUXES [J].
HUTCHINSON, GL ;
MOSIER, AR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1981, 45 (02) :311-316