EASE OF DNA UNWINDING IS A CONSERVED PROPERTY OF YEAST REPLICATION ORIGINS

被引:100
作者
NATALE, DA [1 ]
UMEK, RM [1 ]
KOWALSKI, D [1 ]
机构
[1] ROSWELL PK CANC INST, DEPT MOLEC & CELLULAR BIOL, BUFFALO, NY 14263 USA
关键词
D O I
10.1093/nar/21.3.555
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M 1 3 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins.
引用
收藏
页码:555 / 560
页数:6
相关论文
共 33 条
[1]   FINE-STRUCTURE ANALYSIS OF THE DNA-SEQUENCE REQUIREMENTS FOR AUTONOMOUS REPLICATION OF SACCHAROMYCES-CEREVISIAE PLASMIDS [J].
BOUTON, AH ;
SMITH, MM .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (07) :2354-2363
[2]   DUPLEX OPENING BY DNAA PROTEIN AT NOVEL SEQUENCES IN INITIATION OF REPLICATION AT THE ORIGIN OF THE ESCHERICHIA-COLI CHROMOSOME [J].
BRAMHILL, D ;
KORNBERG, A .
CELL, 1988, 52 (05) :743-755
[3]   A YEAST SILENCER CONTAINS SEQUENCES THAT CAN PROMOTE AUTONOMOUS PLASMID REPLICATION AND TRANSCRIPTIONAL ACTIVATION [J].
BRAND, AH ;
MICKLEM, G ;
NASMYTH, K .
CELL, 1987, 51 (05) :709-719
[4]   PREDICTING DNA DUPLEX STABILITY FROM THE BASE SEQUENCE [J].
BRESLAUER, KJ ;
FRANK, R ;
BLOCKER, H ;
MARKY, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3746-3750
[5]   THE LOCALIZATION OF REPLICATION ORIGINS ON ARS PLASMIDS IN SACCHAROMYCES-CEREVISIAE [J].
BREWER, BJ ;
FANGMAN, WL .
CELL, 1987, 51 (03) :463-471
[6]   LOCALIZATION AND SEQUENCE-ANALYSIS OF YEAST ORIGINS OF DNA-REPLICATION [J].
BROACH, JR ;
LI, YY ;
FELDMAN, J ;
JAYARAM, M ;
ABRAHAM, J ;
NASMYTH, KA ;
HICKS, JB .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1982, 47 :1165-1173
[7]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[8]   PURIFICATION OF A YEAST PROTEIN THAT BINDS TO ORIGINS OF DNA-REPLICATION AND A TRANSCRIPTIONAL SILENCER [J].
DIFFLEY, JFX ;
STILLMAN, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (07) :2120-2124
[9]   PURIFICATION AND CHARACTERIZATION OF OBF1 - A SACCHAROMYCES-CEREVISIAE PROTEIN THAT BINDS TO AUTONOMOUSLY REPLICATING SEQUENCES [J].
FRANCESCONI, SC ;
EISENBERG, S .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (07) :2906-2913
[10]   STUDIES ON A NUCLEASE FROM PENICILLIUM-CITRINUM .1. PURIFICATION OF A NUCLEASE FROM PENICILLIUM-CITRINUM [J].
FUJIMOTO, M ;
KUNINAKA, A ;
YOSHINO, H .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1974, 38 (04) :777-783