LOW-TEMPERATURE EXPANSION IN THE D = 4 ISING-MODEL

被引:6
作者
VOHWINKEL, C
WEISZ, P
机构
[1] Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Munich
关键词
D O I
10.1016/0550-3213(92)90403-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Low-temperature series for the magnetisation, susceptibilities and second moment are derived in the 4-dimensional Ising model. The series are analysed and it is found that they can be reliably extrapolated to the border of the scaling region, where the correlation length is around 1-2 lattice spacings. Here we find good agreement with previous analytic results (from the solution of the renormalization group equations in the scaling region) and with Monte Carlo data.
引用
收藏
页码:647 / 666
页数:20
相关论文
共 8 条
[1]  
DOMB C, 1976, PHASE TRANSITIONS CR, V3
[2]   BROKEN PHASE OF THE 4-DIMENSIONAL ISING-MODEL IN A FINITE VOLUME [J].
JANSEN, K ;
MONTVAY, I ;
MUNSTER, G ;
TRAPPENBERG, T ;
WOLFF, U .
NUCLEAR PHYSICS B, 1989, 322 (03) :698-720
[3]   APPLICATION OF THE LINKED CLUSTER-EXPANSION TO THE N-COMPONENT PHI-4 THEORY [J].
LUSCHER, M ;
WEISZ, P .
NUCLEAR PHYSICS B, 1988, 300 (03) :325-359
[4]   SCALING LAWS AND TRIVIALITY BOUNDS IN THE LATTICE PHI-4 THEORY .2. ONE-COMPONENT MODEL IN THE PHASE WITH SPONTANEOUS SYMMETRY-BREAKING [J].
LUSCHER, M ;
WEISZ, P .
NUCLEAR PHYSICS B, 1988, 295 (01) :65-92
[5]   SCALING LAWS AND TRIVIALITY BOUNDS IN THE LATTICE-PHI-4 THEORY .1. ONE-COMPONENT MODEL IN THE SYMMETRICAL PHASE [J].
LUSCHER, M ;
WEISZ, P .
NUCLEAR PHYSICS B, 1987, 290 (01) :25-60
[6]  
LUSCHER M, 1987, P LECTURES NATO ADV
[7]   DERIVATION OF LOW-TEMPERATURE EXPANSIONS FOR ISING MODEL-X - 4-DIMENSIONAL SIMPLE HYPERCUBIC LATTICE [J].
SYKES, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (06) :879-892
[8]  
SYKES MF, 1979, J PHYS A, V12, P871