ON THE FRACTAL NATURE OF BARKHAUSEN NOISE IN MAGNETICALLY SOFT MATERIALS

被引:17
作者
GEOFFROY, O [1 ]
PORTESEIL, JL [1 ]
机构
[1] LAB MAGNET LOUIS NEEL,CNRS BP 166 X,F-38042 GRENOBLE,FRANCE
关键词
D O I
10.1016/0304-8853(91)90182-A
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Concepts in fractal noises are applied to the ferromagnetic Barkhausen noise (BN). Various soft materials (amorphous alloy, 80-20 NiFe alloy, non-oriented FeSi) feature noise dimensions between 1.5 and 1.7. The scaling properties of the BN are examined (1/f power spectrum, Weierstrass distribution, wavelet expansion). It is argued that the hierarchical structure of the BN reflects scaling, avalanche-like irreversible processes.
引用
收藏
页码:205 / 209
页数:5
相关论文
共 20 条
[1]   DOMAIN-WALL DYNAMICS AND BARKHAUSEN EFFECT IN METALLIC FERROMAGNETIC MATERIALS .1. THEORY [J].
ALESSANDRO, B ;
BEATRICE, C ;
BERTOTTI, G ;
MONTORSI, A .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (06) :2901-2907
[2]   PHENOMENOLOGY AND INTERPRETATION OF THE BARKHAUSEN EFFECT IN FERROMAGNETIC MATERIALS [J].
ALESSANDRO, B ;
BEATRICE, C ;
BERTOTTI, G ;
MONTORSI, A .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (10) :5355-5360
[3]   BARKHAUSEN NOISE AND DOMAIN-STRUCTURE DYNAMICS IN SI-FE AT DIFFERENT POINTS OF THE MAGNETIZATION CURVE [J].
BERTOTTI, G ;
FIORILLO, F ;
SASSI, MP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1981, 23 (02) :136-148
[5]   FREQUENCY SPECTRUM OF THE BARKHAUSEN NOISE [J].
BIORCI, G ;
PESCETTI, D .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (07) :777-780
[6]   NOISE OF FERROMAGNETIC MATERIALS [J].
BITTEL, H .
IEEE TRANSACTIONS ON MAGNETICS, 1969, MAG5 (03) :359-+
[7]   EFFECT OF SURFACE ON POWER SPECTRUM OF BARKHAUSEN NOISE IN FERROMAGNETIC MATERIALS [J].
CELASCO, M ;
FIORILLO, F .
IEEE TRANSACTIONS ON MAGNETICS, 1974, MA10 (02) :115-117
[8]   TIME-AMPLITUDE CORRELATION EFFECT BETWEEN LARGE BARKHAUSEN DISCONTINUITIES (IN MAGNETIZATION NOISE) [J].
CELASCO, M ;
FIORILLO, F ;
MAZZETTI, P .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1974, B 23 (02) :376-384
[9]  
Le Mehaute A., 1990, GEOMETRIES FRACTALES
[10]  
LUTGEMEIER H, 1963, Z ANGEW PHYS, V16, P153