APPLICATION OF THE FINITE-ELEMENT METHOD TO EIGENVALUE PROBLEMS .1. ONE-DIMENSIONAL CALCULATIONS USING OPTIMIZED ELEMENTS

被引:17
作者
JAQUET, R
机构
[1] Theoretische Chemie, Universität Siegen, D-5900 Siegen
关键词
D O I
10.1016/0010-4655(90)90062-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The finite element method (FEM) is used for solving the Schrödinger equation in one dimension. Simple model potentials are selected to compare analytical and numerical results. Within FEM, polynomials up to eighth order are used. A much higher accuracy of the eigenvalues could be achieved, if the size of the elements was adjusted to the node structure of the solution. © 1990.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 33 条
[1]  
ASKAR A, 1984, J CHEM PHYS, V80, P3586, DOI 10.1063/1.447178
[2]   FINITE-ELEMENT METHOD FOR BOUND-STATE CALCULATIONS IN QUANTUM-MECHANICS [J].
ASKAR, A .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (02) :732-734
[3]  
Bathe K., 1977, COMPUT MATH APPL, V3, P154
[4]  
BOWMAN JM, 1988, COMPUT PHYS COMMUN, V51
[5]   SEMI-CLASSICAL GAUSSIAN-BASIS SET METHOD FOR MOLECULAR VIBRATIONAL WAVE-FUNCTIONS [J].
DAVIS, MJ ;
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (08) :3383-3395
[6]   COMPARISON BETWEEN FINITE-ELEMENT METHODS AND SPECTRAL METHODS AS APPLIED TO BOUND-STATE PROBLEMS [J].
DUFF, M ;
RABITZ, H ;
ASKAR, A ;
CAKMAK, A ;
ABLOWITZ, M .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (03) :1543-1559
[7]  
Flugge S., 1994, PRACTICAL QUANTUM ME
[8]  
GRUBER R, 1986, FINITE ELEMENTS PHYS
[9]   ON DISTRIBUTED GAUSSIAN BASES FOR SIMPLE-MODEL MULTIDIMENSIONAL VIBRATIONAL PROBLEMS [J].
HAMILTON, IP ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (01) :306-317
[10]   H-2 SOLVED BY THE FINITE-ELEMENT METHOD [J].
HEINEMANN, D ;
KOLB, D ;
FRICKE, B .
CHEMICAL PHYSICS LETTERS, 1987, 137 (02) :180-182