HIGH ACCURATE RATIONAL APPROXIMATION OF PARAMETRIC CURVES

被引:43
作者
DEGEN, WLF
机构
[1] Mathematisches Institut B, Universität Stuttgart, D-7000 Stuttgart 80
关键词
HIGH ACCURACY APPROXIMATION; APPROXIMATION ORDER; CUBIC RATIONAL CURVES; ASYMPTOTIC EXPANSION; AFFINE AND PROJECTIVE CURVATURE;
D O I
10.1016/0167-8396(93)90043-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Similar to the work of de Boor, Hollig and Sabin [de Boor et al. '87) and Rababah [Rababah '92a] we construct a cubic approximant for a segment of a given curve. However, using a rational cubic instead of a polynomial one, a third order contact can be attained at both endpoints. It is shown that this rises the approximation order up to eight. A detailed analysis of the asymptotic behaviour (as the segment's length tends to zero) is given. It leads to a purely geometric condition for the existence of that rational cubic approximant.
引用
收藏
页码:293 / 313
页数:21
相关论文
共 28 条
[1]   SURVEY OF CURVE AND SURFACE METHODS IN CAGD. [J].
Boehm, Wolfgang ;
Farin, Gerald ;
Kahmann, Juergen .
Computer Aided Geometric Design, 1984, 1 (01) :1-60
[2]  
BOL G, 1950, PROJECTIVE DIFFERENT, V1
[3]  
Dannenberg L., 1985, Computer-Aided Geometric Design, V2, P123, DOI 10.1016/0167-8396(85)90015-9
[4]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
[5]  
Degen W., 1988, Computer-Aided Geometric Design, V5, P259, DOI 10.1016/0167-8396(88)90007-6
[6]  
Degen W.L.F., 1992, MATH METHODS CAGD 2, P171
[7]  
DEGEN WLF, 1993, COMPUTING S, V8, P59
[8]  
Dokken T., 1990, Computer-Aided Geometric Design, V7, P33, DOI 10.1016/0167-8396(90)90019-N
[9]  
EISELE EF, 1983, IN PRESS J APPROX TH
[10]  
Farin G., 1988, CURVES SURFACES COMP