THE PSEUDOSPECTRUM OF THE RESISTIVE MAGNETOHYDRODYNAMICS OPERATOR - RESOLVING THE RESISTIVE ALFVEN PARADOX

被引:18
作者
BORBA, D
RIEDEL, KS
KERNER, W
HUYSMANS, GTA
OTTAVIANI, M
SCHMID, PJ
机构
[1] NYU, NEW YORK, NY 10012 USA
[2] UNIV WASHINGTON, DEPT APPL MATH, SEATTLE, WA 98195 USA
关键词
D O I
10.1063/1.870468
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ''Alfven paradox'' is that as resistivity decreases, the discrete eigenmodes do not converge to the generalized eigenmodes of the ideal Alfven continuum. To resolve the paradox, the epsilon-pseudospectrum of the resistive magnetohydrodynamic (RMHD) operator is considered. It is proven that for any epsilon, the epsilon-pseudospectrum contains the Alfven continuum for sufficiently small resistivity. Formal epsilon-pseudoeigenmodes are constructed using the formal Wentzel-Kramers-Brillouin-Jeffreys solutions, and it is shown that the entire stable half-annulus of complex frequencies with rho\omega\2=\k.B(x)\2 is resonant to order epsilon, i.e., belongs to the epsilon-pseudospectrum. The resistive eigenmodes are exponentially ill-conditioned as a basis and the condition number is proportional to exp(R(M)1/2), Where R(M) is the magnetic Reynolds number.
引用
收藏
页码:3151 / 3160
页数:10
相关论文
共 24 条
[1]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[2]  
BUTLER K, 1992, PHYS FLUIDS A-FLUID, V4, P8
[3]   A COMPLETENESS THEOREM FOR NON-SELFADJOINT EIGENVALUE PROBLEMS IN HYDRODYNAMIC STABILITY [J].
DIPRIMA, RC ;
HABETLER, GJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 34 (03) :218-&
[4]   DECAY OF MHD WAVES BY PHASE MIXING .2. THETA-PINCH IN CYLINDRICAL GEOMETRY [J].
GROSSMANN, W ;
TATARONIS, J .
ZEITSCHRIFT FUR PHYSIK, 1973, 261 (03) :217-236
[6]   RESISTIVE EFFECTS ON ALFVEN WAVE HEATING [J].
KAPPRAFF, JM ;
TATARONIS, JA .
JOURNAL OF PLASMA PHYSICS, 1977, 18 (OCT) :209-226
[7]   NORMAL MODE ANALYSIS FOR RESISTIVE CYLINDRICAL PLASMAS [J].
KERNER, W ;
LERBINGER, K ;
GRUBER, R ;
TSUNEMATSU, T .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (03) :225-240
[8]   RESISTIVE ALFVEN SPECTRUM OF TOKAMAK-LIKE CONFIGURATIONS IN STRAIGHT CYLINDRICAL GEOMETRY [J].
KERNER, W ;
LERBINGER, K ;
RIEDEL, K .
PHYSICS OF FLUIDS, 1986, 29 (09) :2975-2987
[9]   A NOTE ON AN ALGEBRAIC INSTABILITY OF INVISCID PARALLEL SHEAR FLOWS [J].
LANDAHL, MT .
JOURNAL OF FLUID MECHANICS, 1980, 98 (MAY) :243-251
[10]   SOME RIGOROUS RESULTS CONCERNING SPECTRAL THEORY FOR IDEAL MHD [J].
LAURENCE, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (07) :1916-1926