QUALITATIVE RELATIVIZATIONS OF COMPLEXITY CLASSES

被引:26
作者
BOOK, RV
LONG, TJ
SELMAN, AL
机构
[1] OHIO STATE UNIV,DEPT COMP SCI,COLUMBUS,OH 43210
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT COMP SCI,AMES,IA 50011
关键词
D O I
10.1016/0022-0000(85)90053-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The nondeterministic polynomial time-bounded oracle Turing machine endowed with designated accepting states and with designated rejecting states is considered, and suitable restrictions R of this device are developed such that P equals NP intersection co-NP if and only if for every oracle D, P(D) equals NP//R(D), where NP//R(D) is the class of languages L an element of NP(D) that are accepted by oracle machines operating with restrictions R. Positive relativizations are obtained for the P equals ? U intersection co-U and U equals ? NP questions also, where U is the class of languages L in NP accepted by nondeterministic machines that operate in polynomial time and that have for each input at most one accepting computation.
引用
收藏
页码:395 / 413
页数:19
相关论文
共 12 条
[1]  
Baker T., 1975, SIAM Journal on Computing, V4, P431, DOI 10.1137/0204037
[2]   BOUNDED QUERY MACHINES - ON NP( ) AND NPQUERY( ) [J].
BOOK, RV ;
WRATHALL, C .
THEORETICAL COMPUTER SCIENCE, 1981, 15 (01) :41-50
[3]   BOUNDED QUERY MACHINES - ON NP AND PSPACE [J].
BOOK, RV .
THEORETICAL COMPUTER SCIENCE, 1981, 15 (01) :27-39
[4]  
BOOK RV, 1984, SIAM J COMPUT, V13, P461, DOI 10.1137/0213030
[5]  
GESKE J, UNPUB SIAM J COMPUT
[6]   STRUCTURE OF POLYNOMIAL TIME REDUCIBILITY [J].
LADNER, RE .
JOURNAL OF THE ACM, 1975, 22 (01) :155-171
[7]   STRONG NONDETERMINISTIC POLYNOMIAL-TIME REDUCIBILITIES [J].
LONG, TJ .
THEORETICAL COMPUTER SCIENCE, 1982, 21 (01) :1-25
[8]   RELATIVIZED QUESTIONS INVOLVING PROBABILISTIC ALGORITHMS [J].
RACKOFF, C .
JOURNAL OF THE ACM, 1982, 29 (01) :261-268
[9]  
RUSSO D, 1984, UNPUB POSITIVE RELAT
[10]   A UNIFORM APPROACH TO OBTAIN DIAGONAL SETS IN COMPLEXITY CLASSES [J].
SCHONING, U .
THEORETICAL COMPUTER SCIENCE, 1982, 18 (01) :95-103