ON HIGHER-ORDER CORRECTIONS IN SOLITON PERTURBATION-THEORY

被引:6
作者
DOKTOROV, EV
PROKOPENYA, IN
机构
[1] B.I. Stepanov Inst. of Phys., Acad. of Sci., Minsk
关键词
D O I
10.1088/0266-5611/7/2/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A scheme is proposed for calculating higher-order corrections to a soliton in the presence of perturbations. This approach, which is based on the matrix Riemann problem, has made it possible to avoid the use of integral equations. As an example, second-order corrections are calculated to the soliton of the nonlinear Schrodinger equation with a dissipative perturbation.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 10 条
[1]  
Faddeev L.D., 1987, HAMILTONIAN METHOD T
[2]  
Karpman V.I., 1977, ZH EKSP TEOR FIZ, V46, P281
[3]   PERTURBATION EXPANSION FOR ZAKHAROV-SHABAT INVERSE SCATTERING TRANSFORM [J].
KAUP, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :121-133
[4]   SOLITONS AS PARTICLES, OSCILLATORS, AND IN SLOWLY CHANGING MEDIA - SINGULAR PERTURBATION-THEORY [J].
KAUP, DJ ;
NEWELL, AC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 361 (1707) :413-446
[5]   MATRIX PIEMANN PROBLEM OF THE AKNS EQUATION [J].
KAWATA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (10) :3381-3389
[6]   PERTURBATION-THEORY BASED ON THE RIEMANN PROBLEM FOR THE LANDAU-LIFSHITZ EQUATION [J].
KIVSHAR, YS .
PHYSICA D, 1989, 40 (01) :11-32
[7]  
KIVSHAR YS, 1989, REV MOD PHYS, V61, P768
[8]  
KIVSHAR YS, 1984, PERTURBATION THEORY, P21
[9]   PERTURBATION-THEORY FOR SOLITONS IN THE 2ND APPROXIMATION [J].
MASLOV, EM .
THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 42 (03) :237-245
[10]  
ZAKHAROV VE, 1972, ZH EKSP TEOR FIZ, V34, P62