THE HOG PATHWAY CONTROLS OSMOTIC REGULATION OF TRANSCRIPTION VIA THE STRESS-RESPONSE ELEMENT (STRE) OF THE SACCHAROMYCES-CEREVISIAE CTT1 GENE

被引:440
作者
SCHULLER, C
BREWSTER, JL
ALEXANDER, MR
GUSTIN, MC
RUIS, H
机构
[1] UNIV VIENNA,VIENNA BIOCTR,INST BIOCHEM & MOLEK ZELLBIOL,A-1030 VIENNA,AUSTRIA
[2] RICE UNIV,WEISS SCH NAT SCI,DEPT BIOCHEM & CELL BIOL,HOUSTON,TX 77251
关键词
HOG PATHWAY; MAP KINASE; SACCHAROMYCES CEREVISIAE; STRE; STRESS;
D O I
10.1002/j.1460-2075.1994.tb06758.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress, This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress.
引用
收藏
页码:4382 / 4389
页数:8
相关论文
共 52 条
[1]  
BEERS RF, 1952, J BIOL CHEM, V195, P133
[2]  
BELAZZI T, 1991, EMBO J, V10, P585, DOI 10.1002/j.1460-2075.1991.tb07985.x
[3]   ROLES OF GLYCEROL AND GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NAD+) IN ACQUIRED OSMOTOLERANCE OF SACCHAROMYCES-CEREVISIAE [J].
BLOMBERG, A ;
ADLER, L .
JOURNAL OF BACTERIOLOGY, 1989, 171 (02) :1087-1092
[4]   PBS2, A YEAST GENE ENCODING A PUTATIVE PROTEIN-KINASE, INTERACTS WITH THE RAS2 PATHWAY AND AFFECTS OSMOTIC SENSITIVITY OF SACCHAROMYCES-CEREVISIAE [J].
BOGUSLAWSKI, G .
JOURNAL OF GENERAL MICROBIOLOGY, 1992, 138 :2425-2432
[5]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[6]   HEAT-SHOCK AND THE HEAT-SHOCK PROTEINS [J].
BURDON, RH .
BIOCHEMICAL JOURNAL, 1986, 240 (02) :313-324
[7]   CHARACTERIZATION OF SACCHAROMYCES-CEREVISIAE GENES ENCODING SUBUNITS OF CYCLIC AMP-DEPENDENT PROTEIN-KINASE [J].
CANNON, JF ;
TATCHELL, K .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2653-2663
[8]   WEAK ACID PRESERVATIVES BLOCK THE HEAT-SHOCK RESPONSE AND HEAT-SHOCK-ELEMENT-DIRECTED LACZ EXPRESSION OF LOW PH SACCHAROMYCES-CEREVISIAE CULTURES, AN INHIBITORY-ACTION PARTIALLY RELIEVED BY RESPIRATORY DEFICIENCY [J].
CHENG, LL ;
PIPER, PW .
MICROBIOLOGY-SGM, 1994, 140 :1085-1096
[9]   INDUCTION OF INCREASED THERMOTOLERANCE IN SACCHAROMYCES-CEREVISIAE MAY BE TRIGGERED BY A MECHANISM INVOLVING INTRACELLULAR PH [J].
COOTE, PJ ;
COLE, MB ;
JONES, MV .
JOURNAL OF GENERAL MICROBIOLOGY, 1991, 137 :1701-1708
[10]  
CRAIG EA, 1992, MOL CELLULAR BIOL YE, P501