GEOMETRIC LAGRANGIAN APPROACH TO 1ST-ORDER SYSTEMS AND APPLICATIONS

被引:24
作者
CARINENA, JF
LOPEZ, C
RANADA, MF
机构
关键词
D O I
10.1063/1.527954
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1134 / 1142
页数:9
相关论文
共 19 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   EQUIVALENCE BETWEEN THE LAGRANGIAN AND HAMILTONIAN-FORMALISM FOR CONSTRAINED SYSTEMS [J].
BATLLE, C ;
GOMIS, J ;
PONS, JM ;
ROMANROY, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2953-2962
[3]  
Cantrijn F., 1986, Journal of Geometry and Physics, V3, P353, DOI 10.1016/0393-0440(86)90014-8
[4]   THE TIME-EVOLUTION OPERATOR FOR SINGULAR LAGRANGIANS [J].
CARINENA, JF ;
LOPEZ, C .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (03) :203-210
[5]   GEOMETRIC-THEORY OF THE EQUIVALENCE OF LAGRANGIANS FOR CONSTRAINED SYSTEMS [J].
CARINENA, JF ;
IBORT, LA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17) :3335-3341
[6]  
CARINENA JF, 1987, GEOMETRIC STUDY CONN
[7]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772
[8]   ON THE DIFFERENTIAL GEOMETRY OF THE EULER-LAGRANGE EQUATIONS, AND THE INVERSE PROBLEM OF LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10) :2567-2575
[9]  
FARIAS JR, 1985, HADRONIC J, V8, P93
[10]  
Gotay M.J., 1980, ANN LINSTITUT HENRI, V32, P1