THE MEMBERSHIP PROBLEM FOR UNMIXED POLYNOMIAL IDEALS IS SOLVABLE IN SINGLE EXPONENTIAL TIME

被引:50
作者
DICKENSTEIN, A
FITCHAS, N
GIUSTI, M
SESSA, C
机构
[1] CONICET, INST ARGENTINO MATEMAT, RA-1055 BUENOS AIRES, ARGENTINA
[2] ECOLE POLYTECH, CTR MATH, F-91128 PALAISEAU, FRANCE
关键词
D O I
10.1016/0166-218X(91)90109-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Deciding membership for polynomial ideals represents a classical problem of computational commutative algebra which is exponential space hard. This means that the usual algorithms for the membership problem which are based on linear algebra techniques have doubly exponential sequential worst case complexity. We show that the membership problem has single exponential sequential and polynomial parallel complexity for unmixed ideals. More specific complexity results are given for the special cases of zero-dimensional and complete intersection ideals.
引用
收藏
页码:73 / 94
页数:22
相关论文
共 30 条
[1]  
Atiyah M.F., 1969, INTRO COMMUTATIVE AL
[2]  
BERENSTEIN CA, 1988, UNPUB BOUNDS DEGREES
[3]   ON COMPUTING THE DETERMINANT IN SMALL PARALLEL TIME USING A SMALL NUMBER OF PROCESSORS [J].
BERKOWITZ, SJ .
INFORMATION PROCESSING LETTERS, 1984, 18 (03) :147-150
[4]   BOUNDS FOR THE DEGREES IN THE NULLSTELLENSATZ [J].
BROWNAWELL, WD .
ANNALS OF MATHEMATICS, 1987, 126 (03) :577-591
[5]  
Buchberger B., 1985, MULTIDIMENSIONAL SYS, P184
[6]  
Buchberger B., 1970, AEQUATIONES MATH, V4, P374, DOI 10.1007/BF01844169
[7]  
Buchberger B., 1965, THESIS U INNSBRUCK
[8]  
CANIGLIA L, 1988, CR ACAD SCI I-MATH, V307, P255
[9]  
CANIGLIA L, 1989, LECT NOTES COMPUT SC, V357, P131
[10]  
CANIGLIA L, 1989, THESIS U BUENOS AIRE