A PARALLEL ALGORITHM FOR REDUCING SYMMETRICAL BANDED MATRICES TO TRIDIAGONAL FORM

被引:22
作者
LANG, B
机构
关键词
SYMMETRICAL BANDED MATRIX; ORTHOGONAL REDUCTION; EIGENVALUES; PARALLEL; ERROR ANALYSIS;
D O I
10.1137/0914078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is presented for reducing symmetric banded matrices to tridiagonal form via Householder transformations. The algorithm is numerically stable and is well suited to parallel execution on distributed memory multiple instruction multiple data (MIMD) computers. Numerical experiments on the iPSC/860 hypercube show that the new method yields nearly full speedup if it is run on multiple processors. In addition, even on a single processor the new method usually will be several times faster than the corresponding EISPACK and LAPACK routines.
引用
收藏
页码:1320 / 1338
页数:19
相关论文
共 16 条
[1]  
Anderson E., 1992, LAPACK USERS GUIDE
[2]   A PARALLEL HOUSEHOLDER TRIDIAGONALIZATION STRATAGEM USING SCATTERED SQUARE DECOMPOSITION [J].
CHANG, HY ;
UTKU, S ;
SALAMA, M ;
RAPP, D .
PARALLEL COMPUTING, 1988, 6 (03) :297-311
[3]   A PARALLEL HOUSEHOLDER TRIDIAGONALIZATION STRATAGEM USING SCATTERED ROW DECOMPOSITION [J].
CHANG, HY ;
UTKU, S ;
SALAMA, M ;
RAPP, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (04) :857-873
[4]  
DONGARRA J, 1991, LAPACK30 U TENN COMP
[5]   AN EXTENDED SET OF FORTRAN BASIC LINEAR ALGEBRA SUBPROGRAMS [J].
DONGARRA, JJ ;
DUCROZ, J ;
HAMMARLING, S ;
HANSON, RJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01) :1-17
[6]  
DONGARRA JJ, 1990, ACM T MATH SOFTWARE, V16, P1, DOI 10.1145/77626.79170
[7]   A FULLY PARALLEL ALGORITHM FOR THE SYMMETRICAL EIGENVALUE PROBLEM [J].
DONGARRA, JJ ;
SORENSEN, DC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (02) :S139-S154
[8]  
Garbow B. S., 1977, MATRIX EIGENSYSTEM R
[9]  
Golub G.H., 1996, MATH GAZ, VThird
[10]   BANDED EIGENVALUE SOLVERS ON VECTOR MACHINES [J].
KAUFMAN, L .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (01) :73-86