NOVEL REPRESENTATION OF EXPONENTIAL FUNCTIONS OF POWER-SERIES WHICH ARISE IN STATISTICAL-MECHANICS AND POPULATION-GENETICS

被引:4
作者
MA, WT
SANDRI, GV
SARKAR, S
机构
[1] College of Engineering, Boston University, Boston, MA 02215
关键词
D O I
10.1016/0375-9601(91)90573-Q
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the convolution power of infinite sequences to obtain a novel representation of exponential functions of power series which often arise in statistical mechanics. We thus obtain new formulas for the configuration and cluster integrals of pairwise interacting systems of molecules in an imperfect gas. We prove that the asymptotic behaviour of the Luria-Delbruck distribution is p(n) approximately cn-2. We derive a new, simple and computationally efficient recursion relation for p(n).
引用
收藏
页码:103 / 106
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1968, INTRO PROBABILITY TH
[2]  
Bartlett M.S., 1978, INTRO STOCHASTIC PRO
[3]  
HARDY GH, 1917, P LOND MATH SOC, V16, P130
[4]  
Harris T.E., 1989, THEORY BRANCHING PRO
[5]   THE DISTRIBUTION OF THE NUMBERS OF MUTANTS IN BACTERIAL POPULATIONS [J].
LEA, DE ;
COULSON, CA .
JOURNAL OF GENETICS, 1949, 49 (03) :264-285
[6]  
Luria SE, 1943, GENETICS, V28, P491
[7]   POPULATION BIRTH-AND-MUTATION PROCESS .1. EXPLICIT DISTRIBUTIONS FOR NUMBER OF MUTANTS IN AN OLD CULTURE OF BACTERIA [J].
MANDELBROT, B .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (03) :437-444
[8]  
MAYER JE, 1940, STATISTICAL MECHANIC
[9]  
STEWART FM, 1990, GENETICS, V124, P175