CALCULATING LYAPUNOV EXPONENTS FOR SHORT AND OR NOISY DATA SETS

被引:38
作者
BROWN, R
机构
[1] Institute for Nonlinear Science, University of California, San Diego
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 06期
关键词
D O I
10.1103/PhysRevE.47.3962
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a technique for calculating the Lyapunov spectrum from a scalar time series. The technique is particularly useful when the data set is short and/or noisy. The method is based on an orthogonal polynomial expansion of the dynamics. For comparison purposes we test the new technique to two previous methods. We find that the global method performs as well as, or better than, either of the previous techniques.
引用
收藏
页码:3962 / 3969
页数:8
相关论文
共 22 条
[1]   LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09) :1347-1375
[2]  
ABARBANEL HDI, 1993, IN PRESS INT J BIF C
[3]   AN IMPROVED METHOD FOR ESTIMATING LIAPUNOV EXPONENTS OF CHAOTIC TIME-SERIES [J].
BRIGGS, K .
PHYSICS LETTERS A, 1990, 151 (1-2) :27-32
[4]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[5]  
BROWN R, 1993, I NONLINEAR SCI REPO
[6]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[7]  
FOX L, 1968, COMPUTING METHODS SC
[8]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[9]   INFORMATION AND ENTROPY IN STRANGE ATTRACTORS [J].
FRASER, AM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (02) :245-262
[10]   FUNCTIONAL RECONSTRUCTION AND LOCAL PREDICTION OF CHAOTIC TIME-SERIES [J].
GIONA, M ;
LENTINI, F ;
CIMAGALLI, V .
PHYSICAL REVIEW A, 1991, 44 (06) :3496-3502