PROPAGATION DYNAMICS OF ULTRASHORT PULSES IN NONLINEAR FIBER COUPLERS

被引:47
作者
AKHMEDIEV, N [1 ]
SOTOCRESPO, JM [1 ]
机构
[1] CSIC, INST OPT, E-28006 MADRID, SPAIN
关键词
D O I
10.1103/PhysRevE.49.4519
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nonlinear fiber coupler is considered as a Hamiltonian dynamical system with an infinite number of degrees of freedom, with the soliton states of the coupler being the singular points of this dynamical system. Numerical simulations show that arbitrary initial conditions give rise, asymptotically, to oscillations around some of the stable singular points and some amount of radiation. Examples of different initial conditions, including unstable soliton states and single pulses launched in one channel of the coupler are considered.
引用
收藏
页码:4519 / 4529
页数:11
相关论文
共 31 条
[1]  
Abdullaev F. Kh., 1988, Soviet Technical Physics Letters, V14, P458
[2]   DYNAMICS OF SOLITONS IN COUPLED OPTICAL FIBERS [J].
ABDULLAEV, FK ;
ABRAROV, RM ;
DARMANYAN, SA .
OPTICS LETTERS, 1989, 14 (02) :131-133
[3]   NOVEL SOLITON STATES AND BIFURCATION PHENOMENA IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2395-2398
[4]   GENERATION OF A TRAIN OF 3-DIMENSIONAL OPTICAL SOLITONS IN A SELF-FOCUSING MEDIUM [J].
AKHMEDIEV, N ;
SOTOCRESPO, JM .
PHYSICAL REVIEW A, 1993, 47 (02) :1358-1364
[5]  
AKHMEDIEV NN, 1982, ZH EKSP TEOR FIZ, V56, P299
[6]  
ANDRONOV AA, 1984, THEORY OSCILLATORS
[7]  
Ankiewicz A., 1991, International Journal of Optoelectronics, V6, P15
[8]  
[Anonymous], 1986, NONLINEAR DYNAMICAL
[9]   ANALYTICAL SOLUTION TO SOLITON SWITCHING IN NONLINEAR TWIN-CORE FIBERS [J].
CHU, PL ;
PENG, GD ;
MALOMED, BA .
OPTICS LETTERS, 1993, 18 (05) :328-330
[10]   STABILITY ANALYSIS OF NONLINEAR COHERENT COUPLING [J].
DAINO, B ;
GREGORI, G ;
WABNITZ, S .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (12) :4512-4514