NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY

被引:843
作者
GROSS, DJ
MIGDAL, AA
机构
[1] Joseph Henry Laboratories, Princeton University, Princeton
关键词
D O I
10.1103/PhysRevLett.64.127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double-scaling limit of the random-matrix model. We derive an exact differential equation for the partition function of two-dimensional gravity coupled to conformal matter as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We also construct and discuss the correlation functions of an infinite set of local operators for spherical topology. © 1990 The American Physical Society.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 22 条
[1]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[2]   NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION [J].
BESSIS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) :147-163
[3]   MICROCANONICAL SIMULATIONS OF RANDOMLY TRIANGULATED PLANAR RANDOM SURFACES [J].
BILLOIRE, A ;
DAVID, F .
PHYSICS LETTERS B, 1986, 168 (03) :279-283
[4]  
BOULATOV D, 1986, NUCL PHYS B, V275, P543
[5]   UNIVERSALITY, CRITICAL EXPONENTS AND MASS GAP IN THE C-]0 LIMIT OF THE MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 184 (2-3) :247-252
[6]   RANDOMLY TRIANGULATED SURFACES IN 2 DIMENSIONS [J].
DAVID, F .
PHYSICS LETTERS B, 1985, 159 (4-6) :303-306
[7]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[8]  
DOUGLAS M, 1989, IN PRESS RUTGERS U R
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774
[10]  
GELFAND I, 1975, USP MAT NAUK, V30, P5