SIGNAL RECOVERY FROM WAVELET TRANSFORM MAXIMA

被引:67
作者
CETIN, AE [1 ]
ANSARI, R [1 ]
机构
[1] BELLCORE,MORRISTOWN,NJ 07960
关键词
Algorithms - Convergence of numerical methods - Image analysis - Iterative methods - Mathematical transformations - Signal detection;
D O I
10.1109/78.258135
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an iterative algorithm for signal recovery from discrete-time wavelet transform maxima. The signal recovery algorithm is developed by using the method of projections onto convex sets. Convergence of the algorithm is assured.
引用
收藏
页码:194 / 196
页数:3
相关论文
共 12 条
[1]   AN ITERATIVE ALGORITHM FOR SIGNAL RECONSTRUCTION FROM BISPECTRUM [J].
CETIN, AE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (12) :2621-2628
[2]  
COMBETTES PL, ICASSP 91, P2921
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   SINGULARITY DETECTION AND PROCESSING WITH WAVELETS [J].
MALLAT, S ;
HWANG, WL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :617-643
[5]   ZERO-CROSSINGS OF A WAVELET TRANSFORM [J].
MALLAT, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1019-1033
[6]  
MALLAT S, 1991, 592 NEW YORK U TECH
[7]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[8]  
MALLAT SG, 1989, 483 NEW YORK U TECH
[9]  
MEYER Y, 1988, ONDELETTES OPERATEUR
[10]  
Sezan M I, 1982, IEEE Trans Med Imaging, V1, P95, DOI 10.1109/TMI.1982.4307556