EIGENVALUE STATISTICS OF RANDOM REAL MATRICES

被引:109
作者
LEHMANN, N
SOMMERS, HJ
机构
[1] Fachbereich 7, Universität Gesamthochschule Essen, Essen
关键词
D O I
10.1103/PhysRevLett.67.941
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Completing Ginibre's work we determine the joint probability density of eigenvalues in a Gaussian ensemble of real asymmetric matrices, which is invariant under orthogonal transformations. The symmetry parameter-tau may vary from -1 (antisymmetric ensemble) through 0 (completely asymmetric ensemble) to +1 (symmetric ensemble). The elliptic law for the average density of eigenvalues in the limit of large dimension is recovered. Matrices of the type considered appear in models for neural-network dynamics and dissipative quantum dynamics.
引用
收藏
页码:941 / 944
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1967, RANDOM MATRICES
[2]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[3]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[4]   UNIVERSALITY OF CUBIC-LEVEL REPULSION FOR DISSIPATIVE QUANTUM CHAOS [J].
GROBE, R ;
HAAKE, F .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2893-2896
[5]   QUANTUM DISTINCTION OF REGULAR AND CHAOTIC DISSIPATIVE MOTION [J].
GROBE, R ;
HAAKE, F ;
SOMMERS, HJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1899-1902
[6]  
HAAKE F, IN PRESS QUANTUM SIG
[7]   NEURAL NETWORKS AND PHYSICAL SYSTEMS WITH EMERGENT COLLECTIVE COMPUTATIONAL ABILITIES [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2554-2558
[8]   SOLVABLE MODEL OF A SPIN-GLASS [J].
SHERRINGTON, D ;
KIRKPATRICK, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (26) :1792-1796
[9]  
SOMMERS HJ, 1986, PHYS REV LETT, V60, P1895
[10]   CHAOS IN RANDOM NEURAL NETWORKS [J].
SOMPOLINSKY, H ;
CRISANTI, A ;
SOMMERS, HJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (03) :259-262