A CONTINUOUS ANALOG OF THE FISHER-HARTWIG FORMULA FOR PIECEWISE CONTINUOUS SYMBOLS

被引:10
作者
BOTTCHER, A [1 ]
SILBERMANN, B [1 ]
WIDOM, H [1 ]
机构
[1] UNIV CALIF SANTA CRUZ,SANTA CRUZ,CA 95064
关键词
D O I
10.1006/jfan.1994.1066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fisher-Hartwig formula alluded to describes the asymptotic behavior of large Toeplitz determinants generated by piecewise continuous functions. The purpose of the present paper is to establish an analogue of this formula for truncated Wiener-Hopf integral operators under the assumption that these are of the form identity plus trace operator. (C) 1994 Academic Press, Inc.
引用
收藏
页码:222 / 246
页数:25
相关论文
共 16 条
[1]   TOEPLITZ AND WIENER-HOPF DETERMINANTS WITH PIECEWISE CONTINUOUS SYMBOLS [J].
BASOR, E ;
WIDOM, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 50 (03) :387-413
[2]   LOCALIZATION THEOREM FOR TOEPLITZ DETERMINANTS [J].
BASOR, EL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (06) :975-983
[3]   TOEPLITZ-OPERATORS AND DETERMINANTS GENERATED BY SYMBOLS WITH ONE FISHER-HARTWIG SINGULARITY [J].
BOTTCHER, A ;
SILBERMANN, B .
MATHEMATISCHE NACHRICHTEN, 1986, 127 :95-124
[4]  
Bottcher A, 1982, Z ANAL ANWEND, V1, P23
[5]  
BOTTCHER A, 1990, ANAL TOEPLITZ OPERAT
[6]  
BOTTCHER A, 1992, TU228 CHEMN PREPR
[7]  
Fisher M E, 1968, ADV CHEM PHYS, V15, P333, DOI DOI 10.1002/9780470143605.CH18
[8]  
GOHBERG I, 1992, ASYMPTOTIC ANAL, V5, P187
[9]  
GOHBERG IC, 1974, AM MATH SOC TRANSL, V41
[10]  
HIRSCHMAN II, 1966, J MATH MECH, V16, P167