GENERALIZED PRINCIPAL COMPONENT ANALYSIS WITH RESPECT TO INSTRUMENTAL VARIABLES VIA UNIVARIATE SPLINE TRANSFORMATIONS

被引:12
作者
DURAND, JF [1 ]
机构
[1] UM II,ENSAM,INRA,UNITE BIOMETRIE,MONTPELLIER,FRANCE
关键词
REGRESSION SPLINES; LINEAR SMOOTHERS; ADDITIVE MODELS; MULTIVARIATE ANALYSIS;
D O I
10.1016/0167-9473(93)90158-P
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method is proposed for a nonlinear structural analysis of multivariate data. that is termed a generalized principal component analysis with respect to instrumental variables via spline transformations (or spline-PCAIV). This method combines features of multiresponse additive spline regression analysis and principal component analysis. The solution of the corresponding linear problem belongs to the set of the feasible solutions and constitutes the first step of the associated iterative algorithm. Introducing adapted metrics in principal component analysis leads to an interpretation of the method as an optimal canonical analysis. Examples related to distorted pattern recognition, multivariate regression analysis and nonlinear discriminant analysis show how spline-PCAIV works.
引用
收藏
页码:423 / 440
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 2019, MATRIX DIFFERENTIAL, DOI DOI 10.1002/9781119541219.CH5
[2]  
Becker R. A., 1988, NEW S LANGUAGE PROGR
[3]  
BONIFAS L, 1984, REV STAT APPL, V32, P5
[4]  
BREIMAN L, 1989, NONLINEAR DISCRIMINA
[5]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[6]  
DURAND JF, 1992, COMPUTATION STAT, V1, P145
[7]  
ESCOUFIER Y, 1990, BIOMETRIC B, V7, P27
[8]  
ESOUFIER Y, 1987, EUROPEAN COURSES ADV, P285
[9]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[10]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67