INTERACTION OF ASTROCHONDRIN WITH EXTRACELLULAR-MATRIX COMPONENTS AND ITS INVOLVEMENT IN ASTROCYTE PROCESS FORMATION AND CEREBELLAR GRANULE CELL-MIGRATION

被引:73
作者
STREIT, A
NOLTE, C
RASONY, T
SCHACHNER, M
机构
[1] UNIV HEIDELBERG, DEPT NEUROBIOL, W-6900 HEIDELBERG, GERMANY
[2] SWISS FED INST TECHNOL, DEPT NEUROBIOL, CH-8093 ZURICH, SWITZERLAND
关键词
D O I
10.1083/jcb.120.3.799
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have recently characterized a chondroitin sulfate proteoglycan from the murine central nervous system which is expressed by astrocytes in vitro and carries the L2/HNK-1 and L5 carbohydrate structures. In the present study, we provide evidence that its three core proteins of different size are similar in their proteolytic peptide maps and thus designate this group of structurally related molecules astrochondrin. During development, astrochondrin and the L5 carbohydrate were hardly detectable in the brain of 14-d-old mouse embryos by Western blot analysis. Expression of astrochondrin and the L5 epitope was highest at postnatal day 8, the peak of cerebellar granule cell migration and Bergmann glial process formation, and decreased to weakly detectable levels in the adult. Immunocytochemical localization of astrochondrin in the cerebellar cortex of 6-d-old mice showed association of immunoreactivity with the cell surface of astrocytes, including Bergmann glial processes and astrocytes in the internal granular layer or prospective white matter. Endfeet of astrocytes contacting the basal lamina of endothelial and meningeal cells and contact sites between Bergmann glial processes and granule cells also showed detectable levels of astrochondrin. Furthermore, granule cell axons in the molecular layer were astrochondrin immunoreactive. In the adult, astrochondrin immunoreactivity was weakly present in the internal granular layer and white matter. Both Fab fragments of polyclonal antibodies to astrochondrin and monovalent fragments of the L5 monoclonal antibody reduced the formation of processes of mature GFAP-positive astrocytes on laminin and collagen type IV, but not on fibronectin as substrata. Interestingly, the initial attachment of astrocytic cell bodies was not disturbed by these antibodies. Antibodies to astrochondrin also reduced the migration of granule cells in the early postnatal mouse cerebellar cortex. In a solid phase radioligand binding assay, astrochondrin was shown to bind to the extracellular matrix components laminin and collagen type IV, being enhanced in the presence of Ca2+, but not to fibronectin, J1/tenascin or other neural recognition molecules. Furthermore, astrochondrin interacted with collagen types III and V, less strongly with collagen types I, II, and IX, but not with collagen type VI. The interaction of astrochondrin with collagen types III and V was saturable and susceptible to increasing ionic strength, and could be competed by chondroitin sulfate, heparin, and dextran sulfate, but not by hyaluronic acid, glucose-6-phosphate, or neuraminic acid. These observations indicate that astrochondrin may contribute to morphogenetic processes in the developing central nervous system by supporting the interaction of astrocytes with extracellular matrix components, such as laminin and certain collagen types, thus influencing their capacity to extend their processes, possibly by interacting with the basal lamina of meninges and blood vessels. These interactions appear to be, at least in part, dependent on the L5 carbohydrate epitope.
引用
收藏
页码:799 / 814
页数:16
相关论文
共 111 条
[1]   BIOCHEMICAL AND FUNCTIONAL-CHARACTERIZATION OF A NOVEL NEURON-GLIA ADHESION MOLECULE THAT IS INVOLVED IN NEURONAL MIGRATION [J].
ANTONICEK, H ;
PERSOHN, E ;
SCHACHNER, M .
JOURNAL OF CELL BIOLOGY, 1987, 104 (06) :1587-1595
[2]  
BARTSCH S, 1992, J NEUROSCI, V12, P736
[3]  
BARTSCH U, 1992, IN PRESS EJR U NEURO
[4]  
BAZIN H, 1982, PROTIDES BIOL FLUIDS, V29, P615
[5]   CELLULAR REACTION TO WALLERIAN DEGENERATION IN CENTRAL NERVOUS SYSTEM OF CAT [J].
BIGNAMI, A ;
RALSTON, HJ .
BRAIN RESEARCH, 1969, 13 (03) :444-&
[6]   THE PERINODAL ASTROCYTE [J].
BLACK, JA ;
WAXMAN, SG .
GLIA, 1988, 1 (03) :169-183
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   RECIPROCAL MODULATION OF ASTROCYTE STELLATION BY THROMBIN AND PROTEASE NEXIN-1 [J].
CAVANAUGH, KP ;
GURWITZ, D ;
CUNNINGHAM, DD ;
BRADSHAW, RA .
JOURNAL OF NEUROCHEMISTRY, 1990, 54 (05) :1735-1743
[9]  
CLEVELAND DW, 1977, J BIOL CHEM, V252, P1102
[10]   CELL SUBSTRATUM ADHESION IN CHICK NEURAL RETINA DEPENDS UPON PROTEIN HEPARAN-SULFATE INTERACTIONS [J].
COLE, GJ ;
SCHUBERT, D ;
GLASER, L .
JOURNAL OF CELL BIOLOGY, 1985, 100 (04) :1192-1199