CONSTRUCTING O(N LOG N) SIZE MONOTONE FORMULAS FOR THE KTH THRESHOLD FUNCTION OF N-BOOLEAN VARIABLES

被引:17
作者
FRIEDMAN, J [1 ]
机构
[1] HARVARD UNIV,CAMBRIDGE,MA 02138
关键词
MATHEMATICAL TECHNIQUES - Combinatorial Mathematics;
D O I
10.1137/0215047
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we construct formulae for the kth elementary symmetric polynomial of n Boolean variables, using only conjunction and disjunction, which for fixed k are of size O(n log n), with the construction taking time polynomial in n. We also prove theorems involving n log n multiplied by (times) (polynomial in k) upper bounds on such formulae. Our methods involve solving the following combinatorial problem: for fixed k and any n construct a collection of r equals O(log n) function f//1,. . . ,f//r from left brace 1,. . . ,n right brace to left brace 1,. . . ,k right brace such that any subset of left brace 1,. . . ,n right brace of order k is mapped 1-1 to left brace 1,. . . ,k right brace by at least one f//i.
引用
收藏
页码:641 / 654
页数:14
相关论文
共 11 条
[1]  
AJTAI M, 1983, 15TH P ACM S THEOR C
[2]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[3]  
Khasin L. S., 1970, Soviet Physics - Doklady, V14, P1149
[4]  
Kleiman M., 1978, Theoretical Computer Science, V7, P325, DOI 10.1016/0304-3975(78)90021-X
[5]  
Krichevskii R.E, 1964, SOV PHYS DOKL, V8, P770
[6]  
PATERSON MS, 1977, LECTURE NOTES COMPUT, V48, P17
[7]  
PETERSON GL, 1978, 780301 U WASH DEP CO
[8]  
PIPPENGER N, 1974, IBM RC5143 RES REP
[9]   PROBABILISTIC ALGORITHMS IN FINITE-FIELDS [J].
RABIN, MO .
SIAM JOURNAL ON COMPUTING, 1980, 9 (02) :273-280
[10]  
VALIANT LG, UNPUB J ALGORITHMS