LOCALIZATION IN THE GROUND-STATE OF THE ONE-DIMENSIONAL X-Y MODEL WITH A RANDOM TRANSVERSE FIELD

被引:27
作者
KLEIN, A
PEREZ, JF
机构
[1] Department of Mathematics, University of California, Irvine, Irvine, 92717, CA
关键词
D O I
10.1007/BF02097047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ground-state of the quantum spin model {Mathematical expression} in one-dimension, where {hi, iεZ} are independent identically distributed random variables. By means of a Jordan-Wigner transformation the model is mapped into a free Fermi gas in the presence of a random external potential. We then use exponential localization of the one particle states to prove exponential decay for the spin-spin correlation functions. © 1990 Springer-Verlag.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 8 条
[1]   ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY [J].
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :151-184
[2]   CONSTRUCTIVE PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
FROHLICH, J ;
MARTINELLI, F ;
SCOPPOLA, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :21-46
[3]   About the Pauli's equivalence prohibited. [J].
Jordan, P. ;
Wigner, E. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (9-10) :631-651
[4]   2 SOLUBLE MODELS OF AN ANTIFERROMAGNETIC CHAIN [J].
LIEB, E ;
SCHULTZ, T ;
MATTIS, D .
ANNALS OF PHYSICS, 1961, 16 (03) :407-466
[5]   STRONGLY DISORDERED SUPERFLUIDS - QUANTUM FLUCTUATIONS AND CRITICAL-BEHAVIOR [J].
MA, M ;
HALPERIN, BI ;
LEE, PA .
PHYSICAL REVIEW B, 1986, 34 (05) :3136-3143
[6]   SPIN CORRELATION FUNCTIONS OF X-Y MODEL [J].
MCCOY, BM .
PHYSICAL REVIEW, 1968, 173 (02) :531-+
[7]  
THOMPSON CJ, 1967, PHASE TRANSITION CRI, V1
[8]   A NEW PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
VONDREIFUS, H ;
KLEIN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (02) :285-299