In the neurological mutant mouse weaver, CNS precursor cells in the external germinal layer (EGL) of the cerebellar cortex proliferate normally, but fail to differentiate and die in the proliferative zone. To examine the autonomy of expression of the weaver gene, we carried out cell-mixing experiments in vitro. In homo-typic, reaggregate cultures, weaver EGL precursor cells expressed the general neuronal markers N-CAM, L1, and MAP2, but failed to express the late neuronal antigens TAG-1 and astrotactin, to extend neurites or to migrate on glial fibers. After reaggregation with wild-type EGL precursor cells, weaver precursor cells extended neurites equivalent in length to wild-type cells, migrated along astroglial fibers, and expressed TAG-1 and astrotactin. Rescue of neurite production was also achieved by the addition of membranes from, but not by medium conditioned by wild-type cells. These findings suggest that the weaver gene acts nonautonomously, encoding a membrane-associated ligand that induces EGL neuronal differentiation.