HIGH-ORDER MULTISTEP METHODS FOR BOUNDARY-VALUE-PROBLEMS

被引:36
作者
BRUGNANO, L [1 ]
TRIGIANTE, D [1 ]
机构
[1] UNIV FLORENCE,DIPARTIMENTO ENERGET,I-50134 FLORENCE,ITALY
关键词
D O I
10.1016/0168-9274(95)00045-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear multistep methods (LMMs) are extensively used for the numerical approximation of initial value problems (IVPs) for ODE. However, they are not commonly used to approximate continuous boundary value problems (BVPs), except in connection with the shooting method. Recently, boundary value methods (BVMs) have been considered for the approximation of IVPs. We show that many of these methods can also be conveniently used to approximate with high accuracy continuous BVPs.
引用
收藏
页码:79 / 94
页数:16
相关论文
共 14 条
[1]  
AMODIO P, IN PRESS APPL NUMER
[2]  
AMODIO P, UNPUB P NUMDIFF7
[3]  
AMODIO P, UNPUB A STABLE K STE
[4]  
AMODIO P, 61994 U BAR DIP MAT
[5]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[6]   ON COLLOCATION IMPLEMENTATION FOR SINGULARLY PERTURBED 2-POINT PROBLEMS [J].
ASCHER, U ;
JACOBS, S .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (03) :533-549
[7]  
Ascher U., 1988, NUMERICAL SOLUTION B
[8]   STABILITY PROPERTIES OF SOME BOUNDARY-VALUE METHODS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (04) :291-304
[9]   A PARALLEL PRECONDITIONING TECHNIQUE FOR BOUNDARY-VALUE METHODS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (04) :277-290
[10]  
BRUGNANO L, UNPUB SOLVING ODE LI