COMPARATIVE EFFECTS OF NA+/H+ EXCHANGE INHIBITORS AGAINST CARDIAC INJURY PRODUCED BY ISCHEMIA REPERFUSION, HYPOXIA REOXYGENATION, AND THE CALCIUM PARADOX

被引:68
作者
KARMAZYN, M
RAY, M
HAIST, JV
机构
[1] Department of Pharmacology and Toxicology, University of Western Ontario, ON
关键词
HEART; AMILORIDE; HEXAMETHYLENE AMILORIDE; CONTRACTILITY; ENERGY METABOLISM; NA+/CA2+ EXCHANGE; OXYGEN PARADOX;
D O I
10.1097/00005344-199301000-00025
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To examine the role of Na+/H+ exchange in cardiac injury, we compared the effect of amiloride (174 muM) with the markedly more specific and potent inhibitor 5-(N,N-hexamethylene) amiloride (HMA, 1 muM) against cardiac injury produced by reperfusion, reoxygenation, and the calcium paradox. Reperfusion after 15-min ischemia resulted in a 55 +/- 4% recovery in contractility, whereas in the presence of amiloride or HMA, recovery was increased to 82 +/- 5.8 and 72 +/- 7.8%, respectively (p < 0.05 from control), with HMA showing particular efficacy in accelerating recovery. The rapid restoration of function with HMA was also evident in hearts reoxygenated for 1 min after 12-min hypoxia (control 35 +/- 3.2%, HMA 66 +/- 4. 1%, p < 0.05) although the protective effect gradually reversed with continued reoxygenation. On the other hand, with addition of amiloride, the protective effect persisted so that after 30-min reoxygenation values were significantly higher than control (65 +/- 4.1 vs. 47 +/- 3.1%, p < 0.05). Resting tension increases after either reperfusion or reoxygenation were moderate: 124 +/- 8 and 119 +/- 6%, respectively (p > 0.05), but no increases were observed with amiloride or HMA. Bepridil (10 muM), a purported Na+/Ca2+ exchange inhibitor, exerted a salutary effect against reperfusion dysfunction identical to that of amiloride and HMA, whereas in reoxygenated hearts the effects were identical to those observed with HMA. The protective effects of the drugs were not related to improved energy metabolic status. None of the pharmacologic interventions exerted beneficial effects against the calcium paradox. The present results support the concept of Na+/H+ exchange-mediated injury, possibly linked to Na+/Ca2+ exchange activation, in reperfused and reoxygenated myocardium but not in hearts subjected to the calcium paradox.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 26 条