SOLUTIONS OF SEVERAL PROBLEMS IN THE THEORY OF COMPACT POSITIVE OPERATORS

被引:14
作者
ABRAMOVICH, YA [1 ]
WICKSTEAD, AW [1 ]
机构
[1] QUEENS UNIV BELFAST,DEPT PURE MATH,BELFAST BT7 1NN,ANTRIM,NORTH IRELAND
关键词
BANACH LATTICE; COMPACT OPERATOR; MODULUS;
D O I
10.2307/2160655
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a compactly dominated compact operator S on a Dedekind complete Banach lattice whose modulus \S\ is not compact. We also construct a compactly dominated compact operator without modulus.
引用
收藏
页码:3021 / 3026
页数:6
相关论文
共 9 条
[1]   A COMPACT REGULAR OPERATOR WITHOUT MODULUS [J].
ABRAMOVICH, YA ;
WICKSTEAD, AW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) :721-726
[2]  
ABRAMOVICH YA, 1982, C MATH, V46, P75
[3]  
Aliprantis C. D., 1985, POSITIVE OPERATORS, V119
[4]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[5]  
Huijsmans C.B., 1992, ACTA APPL MATH, V27, P143, DOI [10.1007/BF00046645, DOI 10.1007/BF00046645]
[6]  
KREGEL U, 1963, MATH SCAND, V13, P151
[7]   REMARK ON MODULUS OF COMPACT OPERATORS [J].
KRENGEL, U .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (1P1) :132-&
[8]  
WICKSTEAD AW, IN PRESS B POLISH AC
[9]  
WICKSTEAD AW, IN PRESS MATH P CAMB