DIFFERENTIATION-DEPENDENT EXPRESSION OF TENSIN AND CORTACTIN IN CHICKEN OSTEOCLASTS

被引:55
作者
HIURA, K
LIM, SS
LITTLE, SP
LIN, S
SATO, M
机构
[1] ELI LILLY & CO, LILLY CORP CTR, DEPT ENDOCRINE RES, LILLY RES LABS, INDIANAPOLIS, IN 46285 USA
[2] INDIANA UNIV, SCH MED, DEPT ANAT, INDIANAPOLIS, IN USA
[3] JOHNS HOPKINS UNIV, DEPT BIOPHYS, BALTIMORE, MD USA
来源
CELL MOTILITY AND THE CYTOSKELETON | 1995年 / 30卷 / 04期
关键词
TENSIN; CORTACTIN; VINCULIN; CHICKEN; OSTEOCLASTS; DIFFERENTIATION;
D O I
10.1002/cm.970300405
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The expression and localization of tensin and cortactin were examined in osteoclast precursors in comparison with isolated osteoclasts on various substrates. Initially, the ability of hen monocytes to differentiate into osteoclasts was evaluated on plastic or glass, and compared to differentiation on bone. Specifically, monocytes were isolated from the medullary bones of egg-laying hens maintained on a Ca-deficient diet. Differentiation was monitored morphologically and by quantitation of the ability to form Howship's lacunae in bone slices or resorb radiolabeled bone particles of 20-53 mu m diameter. These cells differentiated into tartrate resistant acid phosphatase (TRAP)-positive, bone resorbing, multinucleated syncytia in the presence of cytosine-1-beta-D-arabinofuranoside in a time dependent manner (day 1-6). Differentiation into osteoclast-like cells was similar whether cultured on plastic, on glass, or on bone. When compared to GAP-DH control levels, tensin and cortactin mRNA levels increased by 7- and 10-fold, respectively, by day 6. Tensin and cortactin protein levels also increased by 6- and 15-fold, respectively, by day 6. Immunofluorescence of differentiating precursors showed that tensin localized between regions of cell to cell contact and colocalized with vinculin in podosomes of osteoclast-like cells and of real osteoclasts. Cortactin immunofluorescence was not detectable in monocytes but localized inside tensin/vinculin podosome structures after fusion into osteoclast-like cells and in freshly isolated osteoclasts. Both tensin and cortactin were associated with attachment complexes used by osteoclast-like cells and osteoclasts to resorb bone. Specifically, punctate cortactin staining was observed inside tensin staining which formed a double ring structure at the membrane/bone interface of resorbing osteoclasts. These data showed that tensin and cortactin can be used as osteoclast differentiation markers, that participate in attachment complexes used to resorb bone, and that tensin may participate in the fusion process of osteoclast precursors. (C) 1995 Wiley-Liss, Inc.
引用
收藏
页码:272 / 284
页数:13
相关论文
共 54 条
[1]   GENERATION OF AVIAN CELLS RESEMBLING OSTEOCLASTS FROM MONONUCLEAR PHAGOCYTES [J].
ALVAREZ, JI ;
TEITELBAUM, SL ;
BLAIR, HC ;
GREENFIELD, EM ;
ATHANASOU, NA ;
ROSS, FP .
ENDOCRINOLOGY, 1991, 128 (05) :2324-2335
[2]   OSTEOCLASTIC BONE-RESORPTION BY A POLARIZED VACUOLAR PROTON PUMP [J].
BLAIR, HC ;
TEITELBAUM, SL ;
GHISELLI, R ;
GLUCK, S .
SCIENCE, 1989, 245 (4920) :855-857
[3]   ISOLATED OSTEOCLASTS RESORB THE ORGANIC AND INORGANIC COMPONENTS OF BONE [J].
BLAIR, HC ;
KAHN, AJ ;
CROUCH, EC ;
JEFFREY, JJ ;
TEITELBAUM, SL .
JOURNAL OF CELL BIOLOGY, 1986, 102 (04) :1164-1172
[4]  
BOCKHOLT SM, 1993, J BIOL CHEM, V268, P14565
[5]   LOCALIZATION OF A 215-KDA TYROSINE-PHOSPHORYLATED PROTEIN THAT CROSS-REACTS WITH TENSIN ANTIBODIES [J].
BOCKHOLT, SM ;
OTEY, CA ;
GLENNEY, JR ;
BURRIDGE, K .
EXPERIMENTAL CELL RESEARCH, 1992, 203 (01) :39-46
[6]   HISTOMORPHOMETRIC AND IMMUNOCYTOCHEMICAL STUDIES OF SRC-RELATED OSTEOPETROSIS [J].
BOYCE, BF ;
CHEN, H ;
SORIANO, P ;
MUNDY, GR .
BONE, 1993, 14 (03) :335-340
[7]   REQUIREMENT OF PP60C-SRC EXPRESSION FOR OSTEOCLASTS TO FORM RUFFLED BORDERS AND RESORB BONE IN MICE [J].
BOYCE, BF ;
YONEDA, T ;
LOWE, C ;
SORIANO, P ;
MUNDY, GR .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (04) :1622-1627
[8]   FAILURE OF CELLS OF THE MONONUCLEAR PHAGOCYTE SERIES TO RESORB BONE [J].
CHAMBERS, TJ ;
HORTON, MA .
CALCIFIED TISSUE INTERNATIONAL, 1984, 36 (05) :556-558
[9]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[10]  
CHUANG JZ, 1995, IN PRESS J CELL BIOL