CAUSALITY AND CAUCHY HORIZONS

被引:4
作者
BEEM, JK
机构
[1] Mathematics Department, University of Missouri-Columbia, Columbia, 65211, Missouri
关键词
D O I
10.1007/BF02105677
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Let S be a partial Cauchy surface for (M, g0) which remains a partial Cauchy surface under small metric perturbations. In general, the Cauchy horizon H+(g0, S) may be unstable to small changes in the metric. Points of the horizon may move by large amounts and even the topological type of the horizon may change under arbitrarily small changes in the metric tensor. In this paper, we investigate sufficient conditions for existential, locational, and topological stability of Cauchy horizons under metric changes which perturb the light cones by small amounts.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 12 条
[1]  
Artin E., 1969, INTRO ALGEBRAIC TOPO
[2]   CAUCHY HORIZON INSTABILITY FOR REISSNER-NORDSTROM BLACK-HOLES IN DE SITTER SPACE [J].
BRADY, PR ;
POISSON, E .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (01) :121-125
[3]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR
[4]   DOMAIN OF DEPENDENCE [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) :437-&
[5]   CHRONOLOGY PROTECTION CONJECTURE [J].
HAWKING, SW .
PHYSICAL REVIEW D, 1992, 46 (02) :603-611
[6]   THE INSTABILITY OF THE KERR-LIKE CAUCHY HORIZONS [J].
KROLAK, A ;
RUDNICKI, W .
GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (04) :423-428
[7]   STABILITY OF BLACK-HOLES IN DE-SITTER SPACE [J].
MELLOR, F ;
MOSS, I .
PHYSICAL REVIEW D, 1990, 41 (02) :403-409
[8]   A REASSESSMENT OF THE STABILITY OF THE CAUCHY HORIZON IN DE SITTER SPACE [J].
MELLOR, F ;
MOSS, I .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (04) :L43-L46
[9]   SYMMETRIES OF COSMOLOGICAL CAUCHY HORIZONS [J].
MONCRIEF, V ;
ISENBERG, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) :387-413
[10]  
MONCRIEF V, 1982, ANN PHYS-NEW YORK, V141, P83, DOI 10.1016/0003-4916(82)90273-1