GROUND-STATES OF A TERNARY FCC LATTICE MODEL WITH NEAREST-NEIGHBOR AND NEXT-NEAREST-NEIGHBOR INTERACTIONS

被引:31
作者
CEDER, G
GARBULSKY, GD
AVIS, D
FUKUDA, K
机构
[1] MCGILL UNIV,SCH COMP SCI,MONTREAL H3A 2A7,QUEBEC,CANADA
[2] UNIV TSUKUBA,GRAD SCH SYST MANAGEMENT,BUNKYO KU,TOKYO 112,JAPAN
来源
PHYSICAL REVIEW B | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevB.49.1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The possible ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor pair interactions are investigated by constructing an eight-dimensional configuration polytope and enumerating its vertices. Although a structure could not be constructed for most of the vertices, 31 ternary ground states are found, some of which correspond to structures that have been observed experimentally.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 39 条
[1]   GROUND STATE STRUCTURES IN ORDERED BINARY-ALLOYS WITH SECOND NEIGHBOR INTERACTIONS [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1972, 20 (03) :423-&
[2]  
[Anonymous], 1977, J PHYS C SOLID STATE
[3]  
[Anonymous], 1958, CONSTITUTION BINARY
[4]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[5]   1ST-PRINCIPLES PHASE-STABILITY STUDY OF FCC ALLOYS IN THE TI-AL SYSTEM [J].
ASTA, M ;
DEFONTAINE, D ;
VANSCHILFGAARDE, M ;
SLUITER, M ;
METHFESSEL, M .
PHYSICAL REVIEW B, 1992, 46 (09) :5055-5072
[6]   A PIVOTING ALGORITHM FOR CONVEX HULLS AND VERTEX ENUMERATION OF ARRANGEMENTS AND POLYHEDRA [J].
AVIS, D ;
FUKUDA, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) :295-313
[7]   PHASE-DIAGRAM AND LOW-TEMPERATURE BEHAVIOR OF OXYGEN ORDERING IN YBA2CU3OZ USING ABINITIO INTERACTIONS [J].
CEDER, G ;
ASTA, M ;
CARTER, WC ;
KRAITCHMAN, M ;
DEFONTAINE, D ;
MANN, ME ;
SLUITER, M .
PHYSICAL REVIEW B, 1990, 41 (13) :8698-8701
[8]   ABINITIO STUDY OF THE CU PD ONE-DIMENSIONAL LONG PERIOD SUPERSTRUCTURE PHASE-DIAGRAM [J].
CEDER, G ;
DEFONTAINE, D ;
DREYSSE, H ;
NICHOLSON, DM ;
STOCKS, GM ;
GYORFFY, BL .
ACTA METALLURGICA ET MATERIALIA, 1990, 38 (11) :2299-2308
[9]  
Ceder G., 1993, Computational Materials Science, V1, P144, DOI 10.1016/0927-0256(93)90005-8
[10]   MULTICOMPONENT FORMALISM IN THE MEAN-FIELD APPROXIMATION - A GEOMETRIC INTERPRETATION OF CHEBYSHEV POLYNOMIALS [J].
CENEDESE, P ;
GRATIAS, D .
PHYSICA A, 1991, 179 (02) :277-287