ISOLATION AND CHARACTERIZATION OF THE METHYLOPHILUS SP STRAIN DM11 GENE ENCODING DICHLOROMETHANE DEHALOGENASE/GLUTATHIONE S-TRANSFERASE

被引:58
作者
BADER, R [1 ]
LEISINGER, T [1 ]
机构
[1] ETH ZENTRUM,SWISS FED INST TECHNOL,INST MIKROBIOL,CH-8092 ZURICH,SWITZERLAND
关键词
D O I
10.1128/JB.176.12.3466-3473.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The restricted facultative methylotroph Methylophilus sp. strain DM11 utilizes dichloromethane as the sole carbon and energy source. It differs from other dichloromethane-utilizing methylotrophs by faster growth on this substrate and by possession of a group B dichloromethane dehalogenase catalyzing dechlorination at a fivefold-higher rate than the group A enzymes of slow-growing strains, We isolated dcmA, the structural gene of the strain DM11 dichloromethane dehalogenase, to elucidate its relationship to the previously characterized dcmA gene of Methylobacterium sp. strain DM4, which encodes a group A enzyme. Nucleotide sequence determination of dcmA from strain DM11 predicts a protein of 267 amino acids, corresponding to a molecular mass of 31,197 Da. The 5' terminus of in vivo dcmA transcripts was determined by primer extension to be 70 bp upstream of the translation initiation codon. It was preceded by a putative promoter sequence with high resemblance to the Escherichia coli sigma(70) consensus promoter sequence. dcmA and 130 bp of its upstream sequence were brought under control of the tac promoter and expressed in E. coli to approximately 20% of the total cellular protein by induction with isopropylthiogalactopyranoside (IPTG) and growth at 25 degrees C. Expression at 37 degrees C led to massive formation of inclusion bodies. Comparison of the strain DM11 and strain DM4 dichloromethane dehalogenase sequences revealed 59% identity at the DNA level and 56% identity at the protein level, thus indicating an ancient divergence of the two enzymes. Both dehalogenases are more closely related to eukaryotic class theta glutathione S-transferases than to a number of bacterial glutathione S-transferases.
引用
收藏
页码:3466 / 3473
页数:8
相关论文
共 50 条
[1]   PURIFICATION OF A GLUTATHIONE S-TRANSFERASE THAT MEDIATES FOSFOMYCIN RESISTANCE IN BACTERIA [J].
ARCA, P ;
HARDISSON, C ;
SUAREZ, JE .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1990, 34 (05) :844-848
[2]  
Ausubel FM., 1995, MOL REPROD DEV, V3rd edn, DOI DOI 10.1002/MRD.1080010210
[3]  
BADER R, 1994, THESIS SWISS FEDERAL
[4]   MIF PROTEINS ARE THETA-CLASS GLUTATHIONE-S-TRANSFERASE HOMOLOGS [J].
BLOCKI, FA ;
ELLIS, LBM ;
WACKETT, LP .
PROTEIN SCIENCE, 1993, 2 (12) :2095-2102
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
DELSAL G, 1988, NUCLEIC ACIDS RES, V16, P9878
[7]  
DORONINA NV, COMMUNICATION
[8]   A TECHNIQUE FOR RADIOLABELING DNA RESTRICTION ENDONUCLEASE FRAGMENTS TO HIGH SPECIFIC ACTIVITY [J].
FEINBERG, AP ;
VOGELSTEIN, B .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (01) :6-13
[9]   MOLECULAR-CLONING OF THE PLASMID RP4 PRIMASE REGION IN A MULTI-HOST-RANGE TACP EXPRESSION VECTOR [J].
FURSTE, JP ;
PANSEGRAU, W ;
FRANK, R ;
BLOCKER, H ;
SCHOLZ, P ;
BAGDASARIAN, M ;
LANKA, E .
GENE, 1986, 48 (01) :119-131
[10]   CHARACTERIZATION AND HETEROSPECIFIC EXPRESSION OF CDNA CLONES OF GENES IN THE MAIZE GSH S-TRANSFERASE MULTIGENE FAMILY [J].
GROVE, G ;
ZARLENGO, RP ;
TIMMERMAN, KP ;
LI, NQ ;
TAM, MF ;
TU, CPD .
NUCLEIC ACIDS RESEARCH, 1988, 16 (02) :425-438