THE ASYMPTOTICS OF THE LAPLACIAN ON A MANIFOLD WITH BOUNDARY

被引:219
作者
BRANSON, TP [1 ]
GILKEY, PB [1 ]
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
基金
美国国家科学基金会;
关键词
D O I
10.1080/03605309908820686
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be a second-order differential operator with leading symbol given by the metric tensor on a compact Riemannian manifold with boundary. We compute the asymptotics of the heat equation for Dirichlet, Neumann, and mixed boundary conditions. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 28 条
[1]  
BRANSON T, IN PRESS P AM MATH S
[2]  
BROOKS R, IN PRESS DUKE MATH J
[3]  
CHANG SYA, IN PRESS CONT MATH
[4]  
GILKEY PB, 1979, COMPOS MATH, V38, P201
[5]   THE ETA INVARIANT FOR A CLASS OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
GILKEY, PB ;
SMITH, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (01) :85-131
[6]   BOUNDARY INTEGRAND IN FORMULA FOR SIGNATURE AND EULER CHARACTERISTIC OF A RIEMANNIAN MANIFOLD WITH BOUNDARY [J].
GILKEY, PB .
ADVANCES IN MATHEMATICS, 1975, 15 (03) :334-360
[7]   ASYMPTOTIC EXPANSION FOR HEAT EQUATION [J].
GREINER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 41 (03) :163-&
[8]  
GUNTHER P, 1988, HUYGENS PRINCIPLE HY
[9]   FINITE TEMPERATURE-FIELD THEORY WITH BOUNDARIES - STRESS TENSOR AND SURFACE ACTION RENORMALIZATION [J].
KENNEDY, G ;
CRITCHLEY, R ;
DOWKER, JS .
ANNALS OF PHYSICS, 1980, 125 (02) :346-400
[10]  
LUCKOCK H, IN PRESS CLASSICAL Q