ERGODIC SYSTEMS OF N BALLS IN A BILLIARD TABLE

被引:53
作者
BUNIMOVICH, L
LIVERANI, C
PELLEGRINOTTI, A
SUHOV, Y
机构
[1] UNIV BIELEFELD,FAK PHYS,W-4800 BIELEFELD 1,GERMANY
[2] UNIV ROME 2,DEPT MATH,ROME,ITALY
[3] UNIV ROME 1,DEPT MATH,ROME,ITALY
[4] ACAD SCI USSR,INST PROBLEMS INFORMAT TRANSMISS,MOSCOW V-71,USSR
[5] UNIV CAMBRIDGE,DPMMS,STAT LAB,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1007/BF02102633
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the motion of n balls in billiard tables of a special form and we prove that the resulting dynamical systems are ergodic on a constant energy surface; in fact, they enjoy the K-property. These are the first systems of interacting particles proven to be ergodic for an arbitrary number of particles.
引用
收藏
页码:357 / 396
页数:40
相关论文
共 32 条
[1]  
[Anonymous], 1970, RUSS MATH SURV, DOI [10.1070/RM1970v025n02ABEH003794, DOI 10.1070/RM1970V025N02ABEH003794]
[2]  
BESIN YB, 1977, RUSS MATH SURV, V32, P55
[3]  
BOLTZMANN L, 1964, LECTURE GAS THEORY
[4]   A THEOREM ON ERGODICITY OF 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) :599-621
[5]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[6]  
BUNIMOVICH LA, 1974, MAT SBORNIK, V95, P40
[7]  
BUNIMOVICH LA, 1985, SOV PHYS JETPH, V62, P1242
[8]   CONTINUOUS INVARIANT CONE FAMILIES AND ERGODICITY OF FLOWS IN DIMENSION-3 [J].
BURNS, K ;
GERBER, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :19-25
[9]  
CHERNOV NI, ERGODIC HAMILTONIAN
[10]   POTENTIALS ON THE 2-TORUS FOR WHICH THE HAMILTONIAN FLOW IS ERGODIC [J].
DONNAY, V ;
LIVERANI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :267-302