SIMPLE HEURISTICS FOR UNIT DISK GRAPHS

被引:303
作者
MARATHE, MV [1 ]
BREU, H [1 ]
HUNT, HB [1 ]
RAVI, SS [1 ]
ROSENKRANTZ, DJ [1 ]
机构
[1] UNIV BRITISH COLUMBIA,DEPT COMP SCI,VANCOUVER,BC V6T 1Z4,CANADA
关键词
D O I
10.1002/net.3230250205
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP-hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on-line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects. (C) 1995 John Wiley and Sons, Inc.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 31 条
[1]  
ARORA S, 1992, 33RD P IEEE S F COMP, P14
[2]  
Baker B. S., 1983, 24th Annual Symposium on Foundations of Computer Science, P265, DOI 10.1109/SFCS.1983.7
[3]  
BAKER BS, 1994, J ACM, V41, P155
[4]  
Bar-Yehuda R., 1985, ANN DISCRETE MATH, V25, P27, DOI DOI 10.1016/S0304-0208(08)73101-3
[5]  
BARYEHUDA R, 1982, 14TH P ANN ACM S THE, P303
[6]  
BREU H, 1993, 9327 U BRIT COL DEP
[7]   UNIT DISK GRAPHS [J].
CLARK, BN ;
COLBOURN, CJ ;
JOHNSON, DS .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :165-177
[8]  
Conway J. H., 1988, SPHERE PACKINGS LATT
[9]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[10]  
Golumbic M. C., 1980, ALGORITHMIC GRAPH TH