ERROR ANALYSIS OF A BOUNDARY ELEMENT COLLOCATION METHOD FOR A SCREEN PROBLEM IN R3

被引:11
作者
COSTABEL, M [1 ]
PENZEL, F [1 ]
SCHNEIDER, R [1 ]
机构
[1] TH DARMSTADT,FACHBEREICH MATH,W-6100 DARMSTADT,GERMANY
关键词
D O I
10.2307/2153203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the numerical approximation of the first-kind integral equation on a plane rectangle defined by the single-layer potential of the three-dimensional Laplacian. The solution is approximated by nodal collocation with piecewise bilinear trial functions on a rectangular grid. We prove stability and convergence of this method in the Sobolev space H-1/2 approximately. A key ingredient in the proof is the observation that the collocation equations define symmetric positive definite Toeplitz matrices.
引用
收藏
页码:575 / 586
页数:12
相关论文
共 27 条
[1]   ON THE ASYMPTOTIC CONVERGENCE OF COLLOCATION METHODS [J].
ARNOLD, DN ;
WENDLAND, WL .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :349-381
[2]  
ARNOLD DN, 1984, SIAM J NUMER ANAL, V21, P489
[3]  
Aubin J.-P., 1972, APPROXIMATION ELLIPT
[4]  
BABUSKA I, 1972, MATH FDN FINITE ELEM, P3
[5]  
DAUGE M, 1988, LECTURE NOTES MATH, V1341
[6]   AN IMPROVED BOUNDARY ELEMENT METHOD FOR THE CHARGE-DENSITY OF A THIN ELECTRIFIED PLATE IN R3 [J].
ERVIN, VJ ;
STEPHAN, EP ;
ABOUELSEOUD, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (04) :291-303
[7]  
ERVIN VJ, 1987, BOUNDARY ELEMENTS 9, V1, P167
[8]  
Eskin G., 1981, TRANSL MATH MONOGRAP, V52
[9]  
Frank L.S., 1971, MATH USSR SB, V15, P183, DOI [10.1070/SM1971v015n02ABEH001541, DOI 10.1070/SM1971V015N02ABEH001541]
[10]  
HAGEN R, 1985, APPL ANAL, V19, P117