NUMERICAL EVALUATIONS FOR SHOCK AND DISCONTINUITY VELOCITY RELATED TO SIMILARITY SOLUTIONS OF QUASI-LINEAR HYPERBOLIC SYSTEMS

被引:2
作者
FAZIO, R [1 ]
机构
[1] UNIV MESSINA,DEPT MATH,I-98166 SANT AGATA,ITALY
关键词
numerical evaluations; Quasilinear hyperbolic systems; similarity solutions;
D O I
10.1016/0377-0427(90)90284-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three problems of physical interest, which are described by first-order quasilinear hyperbolic systems in conservative form, are considered. These systems are invariant with respect to the stretching group of transformations and, more important, they admit an associated group. So we are able to characterize both the profile of the shock and discontinuity velocity; the latter by making use of the concept of "discrete perturbation stability analysis". © 1990.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 13 条
[1]   GROUP PROPERTIES OF UTT=[F(U)UX]X [J].
AMES, WF ;
LOHNER, RJ ;
ADAMS, E .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1981, 16 (5-6) :439-447
[2]  
AMES WF, 1969, 11TH P MIDW MECH C I
[3]  
Collatz L, 1960, NUMERICAL TREATMENT
[4]  
Cristescu N., 1967, DYNAMIC PLASTICITY
[5]   SIMILARITY ANALYSIS AND NONLINEAR WAVE-PROPAGATION [J].
DONATO, A .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (04) :307-314
[6]  
DRESNER L, 1983, RES NOTES MATH, V88
[7]   ON THE BREAKING OF WATER-WAVES IN A CHANNEL OF ARBITRARILY VARYING DEPTH AND WIDTH [J].
JEFFREY, A ;
MVUNGI, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1980, 31 (06) :758-761
[8]  
Marchuk G I., 2012, DIFFERENCE METHODS T, DOI [10.1007/BF00046588, DOI 10.1007/BF00046588]
[9]  
May R., 1984, COMPUTATIONAL TECHNI, P1
[10]  
Noye J, 1984, COMPUTATIONAL TECHNI, P95