FINITE-ELEMENT DISPERSION ANALYSIS FOR THE 3-DIMENSIONAL 2ND-ORDER SCALAR WAVE-EQUATION

被引:54
作者
ABBOUD, NN [1 ]
PINSKY, PM [1 ]
机构
[1] STANFORD UNIV,DEPT CIVIL ENGN,STANFORD,CA 94305
关键词
D O I
10.1002/nme.1620350604
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dispersive properties of finite element semidiscretizations of the three-dimensional second-order scalar wave equation are examined for both plane and spherical waves. This analysis throws light on the performance and limitations of the finite element approximation over the entire spectrum of wavenumbers and provides guidance for optimal mesh discretization as well as mass representation. The 8-node trilinear element, 20-node serendipity element, 27-node triquadratic element and the linear and quadratic spherically symmetric elements are considered.
引用
收藏
页码:1183 / 1218
页数:36
相关论文
共 28 条
[1]  
Abboud N. N., 1990, APPL MECH REV 2, V43, P381
[2]  
ABBOUD NN, 1990, THESIS STANFORD U ST
[3]   SPURIOUS REFLECTION OF ELASTIC-WAVES IN NONUNIFORM MESHES OF CONSTANT AND LINEAR STRAIN FINITE-ELEMENTS [J].
BAZANT, ZP ;
CELEP, Z .
COMPUTERS & STRUCTURES, 1982, 15 (04) :451-459
[4]  
BAZANT ZP, 1991, COMP METHODS APPL ME, V16, P16
[5]  
Belytschko T., 1978, MODERN PROBLEMS ELAS, P67
[6]  
Brillouin L., 1953, WAVE PROPAGATION PER
[7]   SPURIOUS REFLECTION OF ELASTIC-WAVES DUE TO GRADUALLY CHANGING FINITE-ELEMENT SIZE [J].
CELEP, Z ;
BAZANT, ZP .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (05) :631-646
[8]   ACCURACY OF STRING ELEMENT MASS MATRIX [J].
FRIED, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 20 (03) :317-321
[9]  
Goudreau GL, 1972, COMPUT METHODS APPL, V1972, P69
[10]  
GOUDREAU GL, 1970, 6915 U CAL DEP CIV E