CROSS-VALIDATION IN REGRESSION AND COVARIANCE STRUCTURE-ANALYSIS - AN OVERVIEW

被引:35
作者
CAMSTRA, A
BOOMSMA, A
机构
关键词
D O I
10.1177/0049124192021001004
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This article gives an overview of cross-validation techniques in regression and covariance structure analysis. The method of cross-validation offers a means for checking the accuracy or reliability of results that were obtained by an exploratory analysis of the data. Cross-validation provides the possibility to select, from a set of alternative models, the model with the greatest predictive validity, that is, the model that cross-validates best. The disadvantage of cross-validation is that the data need to be split in two or more parts. This can be a serious problem when sample size is small. Various authors have therefore tried to find single sample criteria that provide the same kind of information as the cross-validation criteria but that do not require the use of a validation sample. Several of these criteria will be discussed, along with some results from studies comparing cross-validation and single sample criteria in covariance structure analysis.
引用
收藏
页码:89 / 115
页数:27
相关论文
共 45 条