ON THE CONTINUITY OF THE SOLUTION MAP IN LINEAR COMPLEMENTARITY PROBLEMS

被引:35
作者
Gowda, M. Seetharama [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21228 USA
关键词
complementarity problem; copositive matrix; upper and lower semicontinuity; Lipschitz continuity;
D O I
10.1137/0802030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The continuity properties of the solution map y :(M, q) -> (M, q) are investigated, where y(M, q) denotes the solution set corresponding to the linear complementarity problem LCP(M, q). A Robinson-type upper semicontinuity result is established for y, and a generalization of the Mangasarian-Shiau result concerning the Lipschitzian property of y in the q-variable is proved. It is also shown that when the matrix is positive semidefinite (or more generally a G-matrix), the solution map is Lipschitz continuous with respect to the q-vector if and only if the matrix is a P-matrix.
引用
收藏
页码:619 / 634
页数:16
相关论文
共 32 条
[1]  
Cottle, 1992, LINEAR COMPLEMENTARI
[2]  
Cottle R. W., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[3]  
Cottle R. W., 1974, LINEAR ALGEBRA APPL, V8, P189
[4]   COMPLETELY-Q MATRICES [J].
COTTLE, RW .
MATHEMATICAL PROGRAMMING, 1980, 19 (03) :347-351
[5]   SOME PERTURBATION RESULTS FOR THE LINEAR COMPLEMENTARITY-PROBLEM [J].
DOVERSPIKE, RD .
MATHEMATICAL PROGRAMMING, 1982, 23 (02) :181-192
[6]   LINEAR COMPLEMENTARITY PROBLEM [J].
EAVES, BC .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (09) :612-634
[7]  
Garcia C. B., 1973, MATH PROGRAM, V5, P299
[8]  
GOWDA M. S., 1990, BASIC THEOREM COMPLE
[9]  
GOWDA M. S., 1990, RES REP
[10]  
GOWDA M. S., MATH PROGRA IN PRESS