Parsimony-Based Fit Indices for Multiple-Indicator Models: Do They Work?

被引:196
作者
Williams, Larry J. [1 ]
Holahan, Patricia J. [1 ]
机构
[1] Purdue Univ, Krannert Grad Sch Management, W Lafayette, IN 47907 USA
关键词
D O I
10.1080/10705519409539970
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A frequently used type of model in applications of covariance structure analysis is one referred to as a multiple-indicator regression model. This study takes a simulation approach to investigate seven parsimony-based indices used to evaluate this type of model. Four representative theoretical models were examined, and the number of indicators used to represent latent variables was varied with two of the models. Both correctly and incorrectly specified models were fit to the data. The results show that the Akaike information criteria, the root mean square index, and the Tucker-Lewis index were the most effective indices. The implications of the findings for the model selection process are discussed.
引用
收藏
页码:161 / 189
页数:29
相关论文
共 28 条