SELF-ORGANIZATION AND AS CONVERGENCE OF THE ONE-DIMENSIONAL KOHONEN ALGORITHM WITH NONUNIFORMLY DISTRIBUTED STIMULI

被引:42
作者
BOUTON, C
PAGES, G
机构
[1] UNIV PARIS 01,UFR 27,90 RUE TOLBIAC,F-75634 PARIS 13,FRANCE
[2] UNIV PARIS 06,PROBABIL & APPLICAT LAB,F-75230 PARIS 05,FRANCE
关键词
NEURAL NETWORKS; STOCHASTIC ALGORITHMS; MARKOV CHAINS;
D O I
10.1016/0304-4149(93)90017-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper shows that the 2-neighbour Kohonen algorithm is self-organizing under pretty general assumptions on the stimuli distribution mu (supp(mu(c)) contains a non-empty open set) and is a.s. convergent-in a weakened sense-as soon as mu admits a log-concave density. The 0-neighbour algorithm is shown to have similar converging properties. Some numerical simulations illustrate the theoretical results and a counter-example provided by a specific class of density functions.
引用
收藏
页码:249 / 274
页数:26
相关论文
共 19 条
[1]  
BOUTON C, 1988, ANN I H POINCARE-PR, V24, P131
[2]  
COTTRELL M, 1987, ANN I H POINCARE-PR, V23, P1
[3]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[4]  
Hecht-Nielsen R., 1991, NEUROCOMPUTING
[5]   ANALYSIS OF A SIMPLE SELF-ORGANIZING PROCESS [J].
KOHONEN, T .
BIOLOGICAL CYBERNETICS, 1982, 44 (02) :135-140
[6]  
Kohonen T., 1984, SELF ORG ASS MEMORY
[7]  
KUSHNER H., 1984, APPROXIMATION WEAK C
[8]  
Kushner H. J., 1978, Stochastic approximation methods for constrained and unconstrained systems
[9]   QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS [J].
NIEDERREITER, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :957-1041
[10]  
Reinhard H., 1982, EQUATIONS DIFFERENTI